Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the length of the altitude of an equilateral triangle with side length 8 units, we can use the geometric properties of equilateral triangles.
1. Understanding the properties of the equilateral triangle:
- In an equilateral triangle, all sides are equal, and all angles are 60 degrees.
- The altitude of an equilateral triangle splits the triangle into two 30-60-90 right triangles.
2. Relationship in a 30-60-90 triangle:
- In a 30-60-90 triangle, the ratios of the sides are:
- The side opposite the 30° angle is the shortest side.
- The side opposite the 60° angle (which is the altitude in our case) is equal to the shortest side times [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse (which in our case is the side of the equilateral triangle) is twice the shortest side.
3. Determine the lengths of sides in the right triangle:
- The hypotenuse is the side of the equilateral triangle, which is 8 units.
- The shortest side (half of the equilateral triangle's side) is [tex]\( \frac{8}{2} = 4 \)[/tex] units.
4. Calculate the altitude:
- Using the property of the 30-60-90 triangle, the altitude is the shortest side times [tex]\(\sqrt{3}\)[/tex].
- Therefore, the altitude is [tex]\( 4 \times \sqrt{3} \)[/tex].
Using the above reasoning, the altitude of this equilateral triangle is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]
So, the correct answer is [tex]\( 4 \sqrt{3} \)[/tex] units.
1. Understanding the properties of the equilateral triangle:
- In an equilateral triangle, all sides are equal, and all angles are 60 degrees.
- The altitude of an equilateral triangle splits the triangle into two 30-60-90 right triangles.
2. Relationship in a 30-60-90 triangle:
- In a 30-60-90 triangle, the ratios of the sides are:
- The side opposite the 30° angle is the shortest side.
- The side opposite the 60° angle (which is the altitude in our case) is equal to the shortest side times [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse (which in our case is the side of the equilateral triangle) is twice the shortest side.
3. Determine the lengths of sides in the right triangle:
- The hypotenuse is the side of the equilateral triangle, which is 8 units.
- The shortest side (half of the equilateral triangle's side) is [tex]\( \frac{8}{2} = 4 \)[/tex] units.
4. Calculate the altitude:
- Using the property of the 30-60-90 triangle, the altitude is the shortest side times [tex]\(\sqrt{3}\)[/tex].
- Therefore, the altitude is [tex]\( 4 \times \sqrt{3} \)[/tex].
Using the above reasoning, the altitude of this equilateral triangle is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]
So, the correct answer is [tex]\( 4 \sqrt{3} \)[/tex] units.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.