Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the length of the altitude of an equilateral triangle with side length 8 units, we can use the geometric properties of equilateral triangles.
1. Understanding the properties of the equilateral triangle:
- In an equilateral triangle, all sides are equal, and all angles are 60 degrees.
- The altitude of an equilateral triangle splits the triangle into two 30-60-90 right triangles.
2. Relationship in a 30-60-90 triangle:
- In a 30-60-90 triangle, the ratios of the sides are:
- The side opposite the 30° angle is the shortest side.
- The side opposite the 60° angle (which is the altitude in our case) is equal to the shortest side times [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse (which in our case is the side of the equilateral triangle) is twice the shortest side.
3. Determine the lengths of sides in the right triangle:
- The hypotenuse is the side of the equilateral triangle, which is 8 units.
- The shortest side (half of the equilateral triangle's side) is [tex]\( \frac{8}{2} = 4 \)[/tex] units.
4. Calculate the altitude:
- Using the property of the 30-60-90 triangle, the altitude is the shortest side times [tex]\(\sqrt{3}\)[/tex].
- Therefore, the altitude is [tex]\( 4 \times \sqrt{3} \)[/tex].
Using the above reasoning, the altitude of this equilateral triangle is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]
So, the correct answer is [tex]\( 4 \sqrt{3} \)[/tex] units.
1. Understanding the properties of the equilateral triangle:
- In an equilateral triangle, all sides are equal, and all angles are 60 degrees.
- The altitude of an equilateral triangle splits the triangle into two 30-60-90 right triangles.
2. Relationship in a 30-60-90 triangle:
- In a 30-60-90 triangle, the ratios of the sides are:
- The side opposite the 30° angle is the shortest side.
- The side opposite the 60° angle (which is the altitude in our case) is equal to the shortest side times [tex]\(\sqrt{3}\)[/tex].
- The hypotenuse (which in our case is the side of the equilateral triangle) is twice the shortest side.
3. Determine the lengths of sides in the right triangle:
- The hypotenuse is the side of the equilateral triangle, which is 8 units.
- The shortest side (half of the equilateral triangle's side) is [tex]\( \frac{8}{2} = 4 \)[/tex] units.
4. Calculate the altitude:
- Using the property of the 30-60-90 triangle, the altitude is the shortest side times [tex]\(\sqrt{3}\)[/tex].
- Therefore, the altitude is [tex]\( 4 \times \sqrt{3} \)[/tex].
Using the above reasoning, the altitude of this equilateral triangle is:
[tex]\[ 4 \sqrt{3} \text{ units} \][/tex]
So, the correct answer is [tex]\( 4 \sqrt{3} \)[/tex] units.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.