Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze the problem to find the values for [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex] that best complete the chart of the object's velocity over time considering constant acceleration.
We're given four options for [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex]:
1. [tex]\(X = 0\)[/tex], [tex]\(Y = 0\)[/tex], [tex]\(Z = 1\)[/tex]
2. [tex]\(X = 2\)[/tex], [tex]\(Y = 4\)[/tex], [tex]\(Z = 6\)[/tex]
3. [tex]\(X = 3\)[/tex], [tex]\(Y = 3\)[/tex], [tex]\(Z = 3\)[/tex]
4. [tex]\(X = 1\)[/tex], [tex]\(Y = 5\)[/tex], [tex]\(Z = 8\)[/tex]
Since the object is moving with constant acceleration, its velocity should follow a linear pattern, where the change in velocity is the same over equal intervals of time.
Let's evaluate each option:
1. [tex]\(X = 0\)[/tex], [tex]\(Y = 0\)[/tex], [tex]\(Z = 1\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 0.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 0 to 0.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 0 to 1.
This does not indicate a constant acceleration.
2. [tex]\(X = 2\)[/tex], [tex]\(Y = 4\)[/tex], [tex]\(Z = 6\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 2.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 2 to 4.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 4 to 6.
This shows a constant acceleration with equal changes (+2) in velocity over each time interval.
3. [tex]\(X = 3\)[/tex], [tex]\(Y = 3\)[/tex], [tex]\(Z = 3\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 3.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity remains 3.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity remains 3.
This does not show a constant acceleration; rather, it shows constant velocity from [tex]\(t = 1\)[/tex] onwards.
4. [tex]\(X = 1\)[/tex], [tex]\(Y = 5\)[/tex], [tex]\(Z = 8\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 1.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 1 to 5.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 5 to 8.
This shows a non-linear increase in velocity, indicating inconsistent acceleration.
The values that best complete the chart for an object moving at a constant acceleration are:
[tex]\[X = 2, Y = 4, Z = 6\][/tex]
We're given four options for [tex]\(X\)[/tex], [tex]\(Y\)[/tex], and [tex]\(Z\)[/tex]:
1. [tex]\(X = 0\)[/tex], [tex]\(Y = 0\)[/tex], [tex]\(Z = 1\)[/tex]
2. [tex]\(X = 2\)[/tex], [tex]\(Y = 4\)[/tex], [tex]\(Z = 6\)[/tex]
3. [tex]\(X = 3\)[/tex], [tex]\(Y = 3\)[/tex], [tex]\(Z = 3\)[/tex]
4. [tex]\(X = 1\)[/tex], [tex]\(Y = 5\)[/tex], [tex]\(Z = 8\)[/tex]
Since the object is moving with constant acceleration, its velocity should follow a linear pattern, where the change in velocity is the same over equal intervals of time.
Let's evaluate each option:
1. [tex]\(X = 0\)[/tex], [tex]\(Y = 0\)[/tex], [tex]\(Z = 1\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 0.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 0 to 0.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 0 to 1.
This does not indicate a constant acceleration.
2. [tex]\(X = 2\)[/tex], [tex]\(Y = 4\)[/tex], [tex]\(Z = 6\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 2.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 2 to 4.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 4 to 6.
This shows a constant acceleration with equal changes (+2) in velocity over each time interval.
3. [tex]\(X = 3\)[/tex], [tex]\(Y = 3\)[/tex], [tex]\(Z = 3\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 3.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity remains 3.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity remains 3.
This does not show a constant acceleration; rather, it shows constant velocity from [tex]\(t = 1\)[/tex] onwards.
4. [tex]\(X = 1\)[/tex], [tex]\(Y = 5\)[/tex], [tex]\(Z = 8\)[/tex]
- From [tex]\(t = 0\)[/tex] to [tex]\(t = 1\)[/tex]: Velocity changes from 0 to 1.
- From [tex]\(t = 1\)[/tex] to [tex]\(t = 2\)[/tex]: Velocity changes from 1 to 5.
- From [tex]\(t = 2\)[/tex] to [tex]\(t = 3\)[/tex]: Velocity changes from 5 to 8.
This shows a non-linear increase in velocity, indicating inconsistent acceleration.
The values that best complete the chart for an object moving at a constant acceleration are:
[tex]\[X = 2, Y = 4, Z = 6\][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.