Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the probability that a randomly selected student has a grade higher than [tex]\( C \)[/tex], we need to identify the grades that fall into this category. In the grade scale provided, [tex]\( A \)[/tex] is 4, [tex]\( B \)[/tex] is 3, [tex]\( C \)[/tex] is 2, [tex]\( D \)[/tex] is 1, and [tex]\( F \)[/tex] is 0.
A grade higher than [tex]\( C \)[/tex] would refer to grades [tex]\( A \)[/tex] (4) and [tex]\( B \)[/tex] (3). So, we are looking for [tex]\( P(X > 2) \)[/tex].
The probabilities associated with each grade are given as:
- Grade 4: Probability = 0.43
- Grade 3: Probability = 0.31
- Grade 2: Probability = 0.17
- Grade 1: Probability = 0.05
- Grade 0: Probability = 0.04
To find [tex]\( P(X > 2) \)[/tex], we need to sum the probabilities of grades 4 and 3:
[tex]\[ P(X > 2) = P(X = 4) + P(X = 3) \][/tex]
Substituting the given probabilities:
[tex]\[ P(X > 2) = 0.43 + 0.31 = 0.74 \][/tex]
Therefore, the correct representation of the probability that a randomly selected student has a grade higher than [tex]\( C \)[/tex] is [tex]\( P(X > 2) \)[/tex] with a calculated probability of 0.74.
A grade higher than [tex]\( C \)[/tex] would refer to grades [tex]\( A \)[/tex] (4) and [tex]\( B \)[/tex] (3). So, we are looking for [tex]\( P(X > 2) \)[/tex].
The probabilities associated with each grade are given as:
- Grade 4: Probability = 0.43
- Grade 3: Probability = 0.31
- Grade 2: Probability = 0.17
- Grade 1: Probability = 0.05
- Grade 0: Probability = 0.04
To find [tex]\( P(X > 2) \)[/tex], we need to sum the probabilities of grades 4 and 3:
[tex]\[ P(X > 2) = P(X = 4) + P(X = 3) \][/tex]
Substituting the given probabilities:
[tex]\[ P(X > 2) = 0.43 + 0.31 = 0.74 \][/tex]
Therefore, the correct representation of the probability that a randomly selected student has a grade higher than [tex]\( C \)[/tex] is [tex]\( P(X > 2) \)[/tex] with a calculated probability of 0.74.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.