Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the correct answer, let's carefully analyze the relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex] given in the problem.
Charlotte has been working for her company for [tex]\( x \)[/tex] years. The number of years Travis has been working for the company, denoted as [tex]\( y \)[/tex], is exactly 3 years longer than Charlotte. Mathematically, this relationship can be written as:
[tex]\[ y = x + 3 \][/tex]
Our goal is to determine the range of values for [tex]\( y \)[/tex], given that [tex]\( x \)[/tex] can be any non-negative number (since the number of years someone has worked cannot be negative).
### Step-by-Step Analysis
1. Express the relationship: From the statement, [tex]\( y = x + 3 \)[/tex].
2. Determine the minimum value of [tex]\( x \)[/tex]: The smallest non-negative value [tex]\( x \)[/tex] can take is 0 (since [tex]\( x \geq 0 \)[/tex]).
3. Find the corresponding value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0 + 3 \][/tex]
[tex]\[ y = 3 \][/tex]
Thus, the minimum value [tex]\( y \)[/tex] can take is 3.
4. Determine the range for [tex]\( y \)[/tex]: Since [tex]\( y \)[/tex] is always 3 years more than [tex]\( x \)[/tex] and [tex]\( x \)[/tex] starts from 0 and increases indefinitely, [tex]\( y \)[/tex] will start from 3 and increase indefinitely as well.
Therefore, the range of [tex]\( y \)[/tex] is:
[tex]\[ y \geq 3 \][/tex]
After examining the provided options:
A. [tex]\( y \geq 0 \)[/tex]
B. [tex]\( y \geq 3 \)[/tex]
C. [tex]\( y \leq 3 \)[/tex]
D. [tex]\( 0 \leq y \leq 3 \)[/tex]
The correct answer is:
B. [tex]\( y \geq 3 \)[/tex]
Charlotte has been working for her company for [tex]\( x \)[/tex] years. The number of years Travis has been working for the company, denoted as [tex]\( y \)[/tex], is exactly 3 years longer than Charlotte. Mathematically, this relationship can be written as:
[tex]\[ y = x + 3 \][/tex]
Our goal is to determine the range of values for [tex]\( y \)[/tex], given that [tex]\( x \)[/tex] can be any non-negative number (since the number of years someone has worked cannot be negative).
### Step-by-Step Analysis
1. Express the relationship: From the statement, [tex]\( y = x + 3 \)[/tex].
2. Determine the minimum value of [tex]\( x \)[/tex]: The smallest non-negative value [tex]\( x \)[/tex] can take is 0 (since [tex]\( x \geq 0 \)[/tex]).
3. Find the corresponding value of [tex]\( y \)[/tex] when [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 0 + 3 \][/tex]
[tex]\[ y = 3 \][/tex]
Thus, the minimum value [tex]\( y \)[/tex] can take is 3.
4. Determine the range for [tex]\( y \)[/tex]: Since [tex]\( y \)[/tex] is always 3 years more than [tex]\( x \)[/tex] and [tex]\( x \)[/tex] starts from 0 and increases indefinitely, [tex]\( y \)[/tex] will start from 3 and increase indefinitely as well.
Therefore, the range of [tex]\( y \)[/tex] is:
[tex]\[ y \geq 3 \][/tex]
After examining the provided options:
A. [tex]\( y \geq 0 \)[/tex]
B. [tex]\( y \geq 3 \)[/tex]
C. [tex]\( y \leq 3 \)[/tex]
D. [tex]\( 0 \leq y \leq 3 \)[/tex]
The correct answer is:
B. [tex]\( y \geq 3 \)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.