Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which set of ordered pairs could be generated by an exponential function?

A. [tex]\((1,1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right)\)[/tex]

B. [tex]\((1,1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right)\)[/tex]

C. [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex]

D. [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right)\)[/tex]


Sagot :

To determine which set of ordered pairs can be generated by an exponential function, we need to verify if the ratio of consecutive y-values remains consistent across the selected pairs.

### Set 1: [tex]\((1,1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{2}}{1} = \frac{1}{2}, \quad \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}, \quad \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Set 2: [tex]\((1,1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{1} = \frac{1}{4}, \quad \frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}, \quad \frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{4}, \frac{4}{9}, \frac{9}{16}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Set 3: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}, \quad \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}, \quad \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2} \][/tex]

Since the ratios are all the same ([tex]\(\frac{1}{2}\)[/tex]), this set of pairs could indeed be generated by an exponential function.

### Set 4: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}, \quad \frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}, \quad \frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Conclusion

Among the listed sets, only Set 3: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex] could be generated by an exponential function due to the consistent ratio between consecutive y-values.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.