Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Which set of ordered pairs could be generated by an exponential function?

A. [tex]\((1,1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right)\)[/tex]

B. [tex]\((1,1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right)\)[/tex]

C. [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex]

D. [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right)\)[/tex]


Sagot :

To determine which set of ordered pairs can be generated by an exponential function, we need to verify if the ratio of consecutive y-values remains consistent across the selected pairs.

### Set 1: [tex]\((1,1), \left(2, \frac{1}{2}\right), \left(3, \frac{1}{3}\right), \left(4, \frac{1}{4}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{2}}{1} = \frac{1}{2}, \quad \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}, \quad \frac{\frac{1}{4}}{\frac{1}{3}} = \frac{3}{4} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Set 2: [tex]\((1,1), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{9}\right), \left(4, \frac{1}{16}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{1} = \frac{1}{4}, \quad \frac{\frac{1}{9}}{\frac{1}{4}} = \frac{4}{9}, \quad \frac{\frac{1}{16}}{\frac{1}{9}} = \frac{9}{16} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{4}, \frac{4}{9}, \frac{9}{16}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Set 3: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}, \quad \frac{\frac{1}{8}}{\frac{1}{4}} = \frac{1}{2}, \quad \frac{\frac{1}{16}}{\frac{1}{8}} = \frac{1}{2} \][/tex]

Since the ratios are all the same ([tex]\(\frac{1}{2}\)[/tex]), this set of pairs could indeed be generated by an exponential function.

### Set 4: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{6}\right), \left(4, \frac{1}{8}\right)\)[/tex]

- Ratios between consecutive y-values:
[tex]\[ \frac{\frac{1}{4}}{\frac{1}{2}} = \frac{1}{2}, \quad \frac{\frac{1}{6}}{\frac{1}{4}} = \frac{2}{3}, \quad \frac{\frac{1}{8}}{\frac{1}{6}} = \frac{3}{4} \][/tex]

Since the ratios are different ([tex]\(\frac{1}{2}, \frac{2}{3}, \frac{3}{4}\)[/tex]), this set of pairs cannot be generated by an exponential function.

### Conclusion

Among the listed sets, only Set 3: [tex]\(\left(1, \frac{1}{2}\right), \left(2, \frac{1}{4}\right), \left(3, \frac{1}{8}\right), \left(4, \frac{1}{16}\right)\)[/tex] could be generated by an exponential function due to the consistent ratio between consecutive y-values.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.