Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's start by analyzing the given expression:
[tex]\[ \frac{4x + 3}{2x} + \frac{3}{5} \][/tex]
First, let's combine the two separate terms under a common denominator. To do this, we need a common denominator for [tex]\(2x\)[/tex] and [tex]\(5\)[/tex], which is [tex]\(10x\)[/tex].
To combine the fractions, we'll convert each term to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{4x + 3}{2x} = \frac{(4x + 3) \cdot 5}{2x \cdot 5} = \frac{20x + 15}{10x} \][/tex]
Next, convert [tex]\(\frac{3}{5}\)[/tex] to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{3}{5} = \frac{3 \cdot 2x}{5 \cdot 2x} = \frac{6x}{10x} \][/tex]
Now, we add these two fractions:
[tex]\[ \frac{20x + 15}{10x} + \frac{6x}{10x} = \frac{20x + 15 + 6x}{10x} = \frac{26x + 15}{10x} \][/tex]
We now have the expression in the form:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thus, comparing this with the form [tex]\(\frac{cx + b}{cx}\)[/tex], we can see that [tex]\(c = 10\)[/tex], [tex]\(b = 15\)[/tex], and the simplified expression is indeed:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Therefore, the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are as follows:
- [tex]\(a = 10\)[/tex] (denominator coefficient for [tex]\(x\)[/tex])
- [tex]\(b = 15\)[/tex] (constant term in the numerator)
- [tex]\(c = 26\)[/tex] (numerator coefficient for [tex]\(x\)[/tex])
Note that [tex]\(a\)[/tex] is the coefficient of [tex]\(x\)[/tex] in the denominator, and [tex]\(b\)[/tex] remains as the constant term in the numerator. Finally, the simplified form of the given expression is:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
[tex]\[ \frac{4x + 3}{2x} + \frac{3}{5} \][/tex]
First, let's combine the two separate terms under a common denominator. To do this, we need a common denominator for [tex]\(2x\)[/tex] and [tex]\(5\)[/tex], which is [tex]\(10x\)[/tex].
To combine the fractions, we'll convert each term to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{4x + 3}{2x} = \frac{(4x + 3) \cdot 5}{2x \cdot 5} = \frac{20x + 15}{10x} \][/tex]
Next, convert [tex]\(\frac{3}{5}\)[/tex] to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{3}{5} = \frac{3 \cdot 2x}{5 \cdot 2x} = \frac{6x}{10x} \][/tex]
Now, we add these two fractions:
[tex]\[ \frac{20x + 15}{10x} + \frac{6x}{10x} = \frac{20x + 15 + 6x}{10x} = \frac{26x + 15}{10x} \][/tex]
We now have the expression in the form:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thus, comparing this with the form [tex]\(\frac{cx + b}{cx}\)[/tex], we can see that [tex]\(c = 10\)[/tex], [tex]\(b = 15\)[/tex], and the simplified expression is indeed:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Therefore, the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are as follows:
- [tex]\(a = 10\)[/tex] (denominator coefficient for [tex]\(x\)[/tex])
- [tex]\(b = 15\)[/tex] (constant term in the numerator)
- [tex]\(c = 26\)[/tex] (numerator coefficient for [tex]\(x\)[/tex])
Note that [tex]\(a\)[/tex] is the coefficient of [tex]\(x\)[/tex] in the denominator, and [tex]\(b\)[/tex] remains as the constant term in the numerator. Finally, the simplified form of the given expression is:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.