Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's start by analyzing the given expression:
[tex]\[ \frac{4x + 3}{2x} + \frac{3}{5} \][/tex]
First, let's combine the two separate terms under a common denominator. To do this, we need a common denominator for [tex]\(2x\)[/tex] and [tex]\(5\)[/tex], which is [tex]\(10x\)[/tex].
To combine the fractions, we'll convert each term to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{4x + 3}{2x} = \frac{(4x + 3) \cdot 5}{2x \cdot 5} = \frac{20x + 15}{10x} \][/tex]
Next, convert [tex]\(\frac{3}{5}\)[/tex] to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{3}{5} = \frac{3 \cdot 2x}{5 \cdot 2x} = \frac{6x}{10x} \][/tex]
Now, we add these two fractions:
[tex]\[ \frac{20x + 15}{10x} + \frac{6x}{10x} = \frac{20x + 15 + 6x}{10x} = \frac{26x + 15}{10x} \][/tex]
We now have the expression in the form:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thus, comparing this with the form [tex]\(\frac{cx + b}{cx}\)[/tex], we can see that [tex]\(c = 10\)[/tex], [tex]\(b = 15\)[/tex], and the simplified expression is indeed:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Therefore, the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are as follows:
- [tex]\(a = 10\)[/tex] (denominator coefficient for [tex]\(x\)[/tex])
- [tex]\(b = 15\)[/tex] (constant term in the numerator)
- [tex]\(c = 26\)[/tex] (numerator coefficient for [tex]\(x\)[/tex])
Note that [tex]\(a\)[/tex] is the coefficient of [tex]\(x\)[/tex] in the denominator, and [tex]\(b\)[/tex] remains as the constant term in the numerator. Finally, the simplified form of the given expression is:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
[tex]\[ \frac{4x + 3}{2x} + \frac{3}{5} \][/tex]
First, let's combine the two separate terms under a common denominator. To do this, we need a common denominator for [tex]\(2x\)[/tex] and [tex]\(5\)[/tex], which is [tex]\(10x\)[/tex].
To combine the fractions, we'll convert each term to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{4x + 3}{2x} = \frac{(4x + 3) \cdot 5}{2x \cdot 5} = \frac{20x + 15}{10x} \][/tex]
Next, convert [tex]\(\frac{3}{5}\)[/tex] to have a denominator of [tex]\(10x\)[/tex]:
[tex]\[ \frac{3}{5} = \frac{3 \cdot 2x}{5 \cdot 2x} = \frac{6x}{10x} \][/tex]
Now, we add these two fractions:
[tex]\[ \frac{20x + 15}{10x} + \frac{6x}{10x} = \frac{20x + 15 + 6x}{10x} = \frac{26x + 15}{10x} \][/tex]
We now have the expression in the form:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thus, comparing this with the form [tex]\(\frac{cx + b}{cx}\)[/tex], we can see that [tex]\(c = 10\)[/tex], [tex]\(b = 15\)[/tex], and the simplified expression is indeed:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Therefore, the constants [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are as follows:
- [tex]\(a = 10\)[/tex] (denominator coefficient for [tex]\(x\)[/tex])
- [tex]\(b = 15\)[/tex] (constant term in the numerator)
- [tex]\(c = 26\)[/tex] (numerator coefficient for [tex]\(x\)[/tex])
Note that [tex]\(a\)[/tex] is the coefficient of [tex]\(x\)[/tex] in the denominator, and [tex]\(b\)[/tex] remains as the constant term in the numerator. Finally, the simplified form of the given expression is:
[tex]\[ \frac{26x + 15}{10x} \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.