Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve the given equation step-by-step to find out which equation is equivalent to [tex]\(16^{2p} = 32^{p+3}\)[/tex].
1. Rewrite the bases in terms of powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 32 = 2^5 \][/tex]
2. Substitute these expressions into the equation:
[tex]\[ (2^4)^{2p} = (2^5)^{p+3} \][/tex]
3. Simplify the exponents using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] for both sides:
[tex]\[ 2^{4 \cdot 2p} = 2^{5 \cdot (p+3)} \][/tex]
[tex]\[ 2^{8p} = 2^{5p + 15} \][/tex]
4. We now have the equation in the form [tex]\(2^{8p} = 2^{5p + 15}\)[/tex]. Since the bases are the same, we can equate the exponents:
[tex]\[ 8p = 5p + 15 \][/tex]
5. Solving for [tex]\(p\)[/tex]:
[tex]\[ 8p - 5p = 15 \][/tex]
[tex]\[ 3p = 15 \][/tex]
[tex]\[ p = 5 \][/tex]
Thus, the equivalent equation to [tex]\(16^{2p} = 32^{p+3}\)[/tex] is [tex]\(2^{8p} = 2^{5p + 15}\)[/tex].
Now let's match this with the given options:
1. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
2. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
3. [tex]\(2^{8 \rho} = 2^{5 \rho + 15}\)[/tex]
4. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]
The correct matching option from the list is:
[tex]\[ \boxed{4} \][/tex]
1. Rewrite the bases in terms of powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 32 = 2^5 \][/tex]
2. Substitute these expressions into the equation:
[tex]\[ (2^4)^{2p} = (2^5)^{p+3} \][/tex]
3. Simplify the exponents using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] for both sides:
[tex]\[ 2^{4 \cdot 2p} = 2^{5 \cdot (p+3)} \][/tex]
[tex]\[ 2^{8p} = 2^{5p + 15} \][/tex]
4. We now have the equation in the form [tex]\(2^{8p} = 2^{5p + 15}\)[/tex]. Since the bases are the same, we can equate the exponents:
[tex]\[ 8p = 5p + 15 \][/tex]
5. Solving for [tex]\(p\)[/tex]:
[tex]\[ 8p - 5p = 15 \][/tex]
[tex]\[ 3p = 15 \][/tex]
[tex]\[ p = 5 \][/tex]
Thus, the equivalent equation to [tex]\(16^{2p} = 32^{p+3}\)[/tex] is [tex]\(2^{8p} = 2^{5p + 15}\)[/tex].
Now let's match this with the given options:
1. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
2. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
3. [tex]\(2^{8 \rho} = 2^{5 \rho + 15}\)[/tex]
4. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]
The correct matching option from the list is:
[tex]\[ \boxed{4} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.