Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the given equation step-by-step to find out which equation is equivalent to [tex]\(16^{2p} = 32^{p+3}\)[/tex].
1. Rewrite the bases in terms of powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 32 = 2^5 \][/tex]
2. Substitute these expressions into the equation:
[tex]\[ (2^4)^{2p} = (2^5)^{p+3} \][/tex]
3. Simplify the exponents using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] for both sides:
[tex]\[ 2^{4 \cdot 2p} = 2^{5 \cdot (p+3)} \][/tex]
[tex]\[ 2^{8p} = 2^{5p + 15} \][/tex]
4. We now have the equation in the form [tex]\(2^{8p} = 2^{5p + 15}\)[/tex]. Since the bases are the same, we can equate the exponents:
[tex]\[ 8p = 5p + 15 \][/tex]
5. Solving for [tex]\(p\)[/tex]:
[tex]\[ 8p - 5p = 15 \][/tex]
[tex]\[ 3p = 15 \][/tex]
[tex]\[ p = 5 \][/tex]
Thus, the equivalent equation to [tex]\(16^{2p} = 32^{p+3}\)[/tex] is [tex]\(2^{8p} = 2^{5p + 15}\)[/tex].
Now let's match this with the given options:
1. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
2. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
3. [tex]\(2^{8 \rho} = 2^{5 \rho + 15}\)[/tex]
4. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]
The correct matching option from the list is:
[tex]\[ \boxed{4} \][/tex]
1. Rewrite the bases in terms of powers of 2:
[tex]\[ 16 = 2^4 \quad \text{and} \quad 32 = 2^5 \][/tex]
2. Substitute these expressions into the equation:
[tex]\[ (2^4)^{2p} = (2^5)^{p+3} \][/tex]
3. Simplify the exponents using the power rule [tex]\((a^m)^n = a^{m \cdot n}\)[/tex] for both sides:
[tex]\[ 2^{4 \cdot 2p} = 2^{5 \cdot (p+3)} \][/tex]
[tex]\[ 2^{8p} = 2^{5p + 15} \][/tex]
4. We now have the equation in the form [tex]\(2^{8p} = 2^{5p + 15}\)[/tex]. Since the bases are the same, we can equate the exponents:
[tex]\[ 8p = 5p + 15 \][/tex]
5. Solving for [tex]\(p\)[/tex]:
[tex]\[ 8p - 5p = 15 \][/tex]
[tex]\[ 3p = 15 \][/tex]
[tex]\[ p = 5 \][/tex]
Thus, the equivalent equation to [tex]\(16^{2p} = 32^{p+3}\)[/tex] is [tex]\(2^{8p} = 2^{5p + 15}\)[/tex].
Now let's match this with the given options:
1. [tex]\(8^{4p} = 8^{4p+3}\)[/tex]
2. [tex]\(8^{4p} = 8^{4p+12}\)[/tex]
3. [tex]\(2^{8 \rho} = 2^{5 \rho + 15}\)[/tex]
4. [tex]\(2^{8p} = 2^{5p+3}\)[/tex]
The correct matching option from the list is:
[tex]\[ \boxed{4} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.