Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the length of the minor arc [tex]\(XZ\)[/tex] in circle [tex]\(Y\)[/tex] with a radius of 3 meters and a central angle [tex]\(x Y Z\)[/tex] measuring [tex]\(70^\circ\)[/tex], we can follow these steps:
1. Understand the relationship between radians and degrees:
The formula for converting degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
2. Convert the central angle to radians:
[tex]\[ 70^\circ \times \left( \frac{\pi}{180} \right) \approx 1.2217 \text{ radians} \][/tex]
3. Use the arc length formula:
The formula to calculate the arc length [tex]\(L\)[/tex] is:
[tex]\[ L = r \times \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians.
4. Substitute the given values into the formula:
[tex]\[ L = 3 \text{ meters} \times 1.2217 \text{ radians} \approx 3.6651 \text{ meters} \][/tex]
5. Round the result to the nearest tenth:
The approximate length of the minor arc is [tex]\(\approx 3.7\)[/tex] meters.
Therefore, the approximate length of minor arc [tex]\(XZ\)[/tex] is 3.7 meters.
1. Understand the relationship between radians and degrees:
The formula for converting degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left( \frac{\pi}{180} \right) \][/tex]
2. Convert the central angle to radians:
[tex]\[ 70^\circ \times \left( \frac{\pi}{180} \right) \approx 1.2217 \text{ radians} \][/tex]
3. Use the arc length formula:
The formula to calculate the arc length [tex]\(L\)[/tex] is:
[tex]\[ L = r \times \theta \][/tex]
where [tex]\(r\)[/tex] is the radius and [tex]\(\theta\)[/tex] is the central angle in radians.
4. Substitute the given values into the formula:
[tex]\[ L = 3 \text{ meters} \times 1.2217 \text{ radians} \approx 3.6651 \text{ meters} \][/tex]
5. Round the result to the nearest tenth:
The approximate length of the minor arc is [tex]\(\approx 3.7\)[/tex] meters.
Therefore, the approximate length of minor arc [tex]\(XZ\)[/tex] is 3.7 meters.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.