Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the average atomic mass of element [tex]\(M\)[/tex], we need to consider the relative abundances and the atomic masses of its isotopes. The calculation involves the following steps:
1. Extract Data:
- Relative abundances: 78.99%, 10.00%, 11.01%
- Atomic masses: 23.9850 amu, 24.9858 amu, 25.9826 amu
2. Calculate the weighted atomic masses:
- For the first isotope: [tex]\( 78.99 \times 23.9850 = 1894.57515 \)[/tex]
- For the second isotope: [tex]\( 10.00 \times 24.9858 = 249.858 \)[/tex]
- For the third isotope: [tex]\( 11.01 \times 25.9826 = 286.068426 \)[/tex]
3. Calculate the total relative abundance:
- [tex]\( 78.99 + 10.00 + 11.01 = 100.0 \)[/tex]
4. Calculate the average atomic mass:
- Sum of weighted atomic masses:
[tex]\( 1894.57515 + 249.858 + 286.068426 = 2430.501576 \)[/tex]
- Divide the sum by the total relative abundance:
[tex]\( \frac{2430.501576}{100.0} = 24.30501576 \)[/tex]
So, the average atomic mass of element [tex]\(M\)[/tex] is approximately [tex]\(24.30\)[/tex] amu. Therefore, the correct answer is:
24.30
1. Extract Data:
- Relative abundances: 78.99%, 10.00%, 11.01%
- Atomic masses: 23.9850 amu, 24.9858 amu, 25.9826 amu
2. Calculate the weighted atomic masses:
- For the first isotope: [tex]\( 78.99 \times 23.9850 = 1894.57515 \)[/tex]
- For the second isotope: [tex]\( 10.00 \times 24.9858 = 249.858 \)[/tex]
- For the third isotope: [tex]\( 11.01 \times 25.9826 = 286.068426 \)[/tex]
3. Calculate the total relative abundance:
- [tex]\( 78.99 + 10.00 + 11.01 = 100.0 \)[/tex]
4. Calculate the average atomic mass:
- Sum of weighted atomic masses:
[tex]\( 1894.57515 + 249.858 + 286.068426 = 2430.501576 \)[/tex]
- Divide the sum by the total relative abundance:
[tex]\( \frac{2430.501576}{100.0} = 24.30501576 \)[/tex]
So, the average atomic mass of element [tex]\(M\)[/tex] is approximately [tex]\(24.30\)[/tex] amu. Therefore, the correct answer is:
24.30
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.