Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the quadratic equation [tex]\( x^2 + 6x + 8 = 0 \)[/tex], follow these detailed steps:
1. Identify the coefficients:
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex].
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 6\)[/tex], and [tex]\(c = 8\)[/tex].
2. Analyze the quadratic equation for factoring:
Factoring a quadratic equation involves writing it as a product of two binomial expressions. Look for two numbers that multiply to [tex]\(ac\)[/tex] (which is [tex]\(1 \cdot 8 = 8\)[/tex]) and add to [tex]\(b\)[/tex] (which is 6).
The numbers that multiply to 8 and add to 6 are 2 and 4.
3. Write the equation in factored form:
Rewrite the middle term, [tex]\(6x\)[/tex], as a sum of two terms using the numbers found in the previous step:
[tex]\[ x^2 + 6x + 8 = x^2 + 2x + 4x + 8 \][/tex]
4. Group and factor by grouping:
Group terms to factor by grouping:
[tex]\[ (x^2 + 2x) + (4x + 8) \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ x(x + 2) + 4(x + 2) \][/tex]
Notice that [tex]\((x + 2)\)[/tex] is a common factor:
[tex]\[ (x + 2)(x + 4) \][/tex]
5. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
Set each factor equal to zero to find the solutions to the equation:
[tex]\[ x + 2 = 0 \quad \text{or} \quad x + 4 = 0 \][/tex]
Solving these equations:
[tex]\[ x = -2 \quad \text{or} \quad x = -4 \][/tex]
Therefore, the solutions to the equation [tex]\( x^2 + 6x + 8 = 0 \)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -4 \)[/tex].
1. Identify the coefficients:
The general form of a quadratic equation is [tex]\( ax^2 + bx + c = 0 \)[/tex].
Here, [tex]\(a = 1\)[/tex], [tex]\(b = 6\)[/tex], and [tex]\(c = 8\)[/tex].
2. Analyze the quadratic equation for factoring:
Factoring a quadratic equation involves writing it as a product of two binomial expressions. Look for two numbers that multiply to [tex]\(ac\)[/tex] (which is [tex]\(1 \cdot 8 = 8\)[/tex]) and add to [tex]\(b\)[/tex] (which is 6).
The numbers that multiply to 8 and add to 6 are 2 and 4.
3. Write the equation in factored form:
Rewrite the middle term, [tex]\(6x\)[/tex], as a sum of two terms using the numbers found in the previous step:
[tex]\[ x^2 + 6x + 8 = x^2 + 2x + 4x + 8 \][/tex]
4. Group and factor by grouping:
Group terms to factor by grouping:
[tex]\[ (x^2 + 2x) + (4x + 8) \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ x(x + 2) + 4(x + 2) \][/tex]
Notice that [tex]\((x + 2)\)[/tex] is a common factor:
[tex]\[ (x + 2)(x + 4) \][/tex]
5. Set each factor equal to zero and solve for [tex]\(x\)[/tex]:
Set each factor equal to zero to find the solutions to the equation:
[tex]\[ x + 2 = 0 \quad \text{or} \quad x + 4 = 0 \][/tex]
Solving these equations:
[tex]\[ x = -2 \quad \text{or} \quad x = -4 \][/tex]
Therefore, the solutions to the equation [tex]\( x^2 + 6x + 8 = 0 \)[/tex] are [tex]\( x = -2 \)[/tex] and [tex]\( x = -4 \)[/tex].
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.