Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To identify the correct statement about the polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], we need to determine its zeros (the values of [tex]\( x \)[/tex] that make [tex]\( y = 0 \)[/tex]). From the given information, we know the zeros of the polynomial are [tex]\(-3\)[/tex] and [tex]\(-\frac{2}{7}\)[/tex].
Next, let's examine each statement:
A. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Therefore, this statement is false.
B. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- If we expand [tex]\( (x + 3)(7x + 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Moreover, the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] do not match the given zeros. Hence, this statement is false.
C. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], and the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] are incorrect. Therefore, this statement is false.
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- Let's expand [tex]\( (x + 3)(7x + 2) \)[/tex]:
[tex]\[ (x + 3)(7x + 2) = x(7x + 2) + 3(7x + 2) = 7x^2 + 2x + 21x + 6 = 7x^2 + 23x + 6. \][/tex]
This is exactly the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Thus, the correct factorization is [tex]\( y = (x + 3)(7x + 2) \)[/tex], and the zeros are indeed [tex]\(-3\)[/tex] and [tex]\( -\frac{2}{7} \)[/tex].
Since statement D is both factually and mathematically accurate, the correct answer is:
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
Next, let's examine each statement:
A. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Therefore, this statement is false.
B. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- If we expand [tex]\( (x + 3)(7x + 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Moreover, the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] do not match the given zeros. Hence, this statement is false.
C. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], and the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] are incorrect. Therefore, this statement is false.
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- Let's expand [tex]\( (x + 3)(7x + 2) \)[/tex]:
[tex]\[ (x + 3)(7x + 2) = x(7x + 2) + 3(7x + 2) = 7x^2 + 2x + 21x + 6 = 7x^2 + 23x + 6. \][/tex]
This is exactly the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Thus, the correct factorization is [tex]\( y = (x + 3)(7x + 2) \)[/tex], and the zeros are indeed [tex]\(-3\)[/tex] and [tex]\( -\frac{2}{7} \)[/tex].
Since statement D is both factually and mathematically accurate, the correct answer is:
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.