Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To identify the correct statement about the polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], we need to determine its zeros (the values of [tex]\( x \)[/tex] that make [tex]\( y = 0 \)[/tex]). From the given information, we know the zeros of the polynomial are [tex]\(-3\)[/tex] and [tex]\(-\frac{2}{7}\)[/tex].
Next, let's examine each statement:
A. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Therefore, this statement is false.
B. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- If we expand [tex]\( (x + 3)(7x + 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Moreover, the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] do not match the given zeros. Hence, this statement is false.
C. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], and the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] are incorrect. Therefore, this statement is false.
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- Let's expand [tex]\( (x + 3)(7x + 2) \)[/tex]:
[tex]\[ (x + 3)(7x + 2) = x(7x + 2) + 3(7x + 2) = 7x^2 + 2x + 21x + 6 = 7x^2 + 23x + 6. \][/tex]
This is exactly the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Thus, the correct factorization is [tex]\( y = (x + 3)(7x + 2) \)[/tex], and the zeros are indeed [tex]\(-3\)[/tex] and [tex]\( -\frac{2}{7} \)[/tex].
Since statement D is both factually and mathematically accurate, the correct answer is:
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
Next, let's examine each statement:
A. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Therefore, this statement is false.
B. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- If we expand [tex]\( (x + 3)(7x + 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Moreover, the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] do not match the given zeros. Hence, this statement is false.
C. The zeros are 3 and [tex]\( \frac{2}{7} \)[/tex], because [tex]\( y = (x - 3)(7x - 2) \)[/tex].
- If we expand [tex]\( (x - 3)(7x - 2) \)[/tex], it would not give us the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex], and the zeros [tex]\( 3 \)[/tex] and [tex]\( \frac{2}{7} \)[/tex] are incorrect. Therefore, this statement is false.
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
- Let's expand [tex]\( (x + 3)(7x + 2) \)[/tex]:
[tex]\[ (x + 3)(7x + 2) = x(7x + 2) + 3(7x + 2) = 7x^2 + 2x + 21x + 6 = 7x^2 + 23x + 6. \][/tex]
This is exactly the original polynomial [tex]\( y = 7x^2 + 23x + 6 \)[/tex]. Thus, the correct factorization is [tex]\( y = (x + 3)(7x + 2) \)[/tex], and the zeros are indeed [tex]\(-3\)[/tex] and [tex]\( -\frac{2}{7} \)[/tex].
Since statement D is both factually and mathematically accurate, the correct answer is:
D. The zeros are -3 and [tex]\( -\frac{2}{7} \)[/tex], because [tex]\( y = (x + 3)(7x + 2) \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.