At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] for a standard normal distribution, we will follow these steps:
1. Find the cumulative probability up to [tex]\(z = -0.78\)[/tex]:
- From the standard normal table, the cumulative probability up to [tex]\(z = 0.78\)[/tex] is 0.7823.
- Since the normal distribution is symmetric about the mean (0), the cumulative probability for [tex]\(z = -0.78\)[/tex] is [tex]\(1 - 0.7823 = 0.2177\)[/tex].
2. Find the cumulative probability up to [tex]\(z = 1.16\)[/tex]:
- From the standard normal table, the cumulative probability up to [tex]\(z = 1.16\)[/tex] is 0.8770.
3. Calculate the probability between [tex]\(z = -0.78\)[/tex] and [tex]\(z = 1.16\)[/tex]:
- The probability between these two points is the difference between their cumulative probabilities:
[tex]\[ P(-0.78 \leq z \leq 1.16) = P(z \leq 1.16) - P(z \leq -0.78) \][/tex]
Substituting the values we found from the table:
[tex]\[ P(-0.78 \leq z \leq 1.16) = 0.8770 - 0.2177 = 0.6593 \][/tex]
Therefore, the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] is 0.6593. This corresponds to 65.93%, making the closest match from the listed options [tex]\(66 \%\)[/tex]. Hence, the correct answer is [tex]\( 66\% \)[/tex].
1. Find the cumulative probability up to [tex]\(z = -0.78\)[/tex]:
- From the standard normal table, the cumulative probability up to [tex]\(z = 0.78\)[/tex] is 0.7823.
- Since the normal distribution is symmetric about the mean (0), the cumulative probability for [tex]\(z = -0.78\)[/tex] is [tex]\(1 - 0.7823 = 0.2177\)[/tex].
2. Find the cumulative probability up to [tex]\(z = 1.16\)[/tex]:
- From the standard normal table, the cumulative probability up to [tex]\(z = 1.16\)[/tex] is 0.8770.
3. Calculate the probability between [tex]\(z = -0.78\)[/tex] and [tex]\(z = 1.16\)[/tex]:
- The probability between these two points is the difference between their cumulative probabilities:
[tex]\[ P(-0.78 \leq z \leq 1.16) = P(z \leq 1.16) - P(z \leq -0.78) \][/tex]
Substituting the values we found from the table:
[tex]\[ P(-0.78 \leq z \leq 1.16) = 0.8770 - 0.2177 = 0.6593 \][/tex]
Therefore, the approximate value of [tex]\( P(-0.78 \leq z \leq 1.16) \)[/tex] is 0.6593. This corresponds to 65.93%, making the closest match from the listed options [tex]\(66 \%\)[/tex]. Hence, the correct answer is [tex]\( 66\% \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.