Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine which function is increasing on the interval [tex]\((- \infty, \infty)\)[/tex], let's analyze each one step-by-step:
### Function A: [tex]\( f(x) = -3x + 7 \)[/tex]
This is a linear function with a slope of [tex]\( -3 \)[/tex]. The slope tells us the rate of change of the function:
- If the slope is positive, the function is increasing.
- If the slope is negative, the function is decreasing.
Since the slope here is [tex]\( -3 \)[/tex] (which is negative), [tex]\( f(x) \)[/tex] is a decreasing function over the interval [tex]\((- \infty, \infty)\)[/tex].
### Function B: [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
This is a quadratic function, which typically takes the form [tex]\( ax^2 + bx + c \)[/tex]:
- For quadratic functions, the sign of the coefficient [tex]\( a \)[/tex] determines whether the parabola opens upwards or downwards.
- Here, [tex]\( a = 1 \)[/tex] (positive), so the parabola opens upwards, which implies it has a minimum point.
To determine the interval where [tex]\( j(x) \)[/tex] is increasing, we can find the vertex (the minimum point):
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -4 \][/tex]
- For [tex]\( x < -4 \)[/tex], [tex]\( j(x) \)[/tex] is decreasing.
- For [tex]\( x > -4 \)[/tex], [tex]\( j(x) \)[/tex] is increasing.
However, [tex]\( j(x) \)[/tex] is not increasing over the entire interval [tex]\((- \infty, \infty) \)[/tex], only for [tex]\( x > -4 \)[/tex].
### Function C: [tex]\( g(x) = -4 \cdot 2^x \)[/tex]
This is an exponential function multiplied by a negative constant:
- The base of the exponential function [tex]\( 2^x \)[/tex] grows exponentially.
- Multiplying by a negative constant [tex]\( -4 \)[/tex] reverses the direction of growth.
As a result, [tex]\( g(x) \)[/tex] is a decreasing function over the interval [tex]\((- \infty, \infty)\)[/tex].
### Function D: [tex]\( h(x) = 2^x - 1 \)[/tex]
This is also an exponential function:
- The base [tex]\( 2^x \)[/tex] grows exponentially.
- Subtracting 1 does not affect the direction of the growth, only shifts the graph vertically.
Since the base [tex]\( 2 \)[/tex] is greater than 1, the function [tex]\( 2^x \)[/tex] is always increasing. Thus, [tex]\( h(x) = 2^x - 1 \)[/tex] is also increasing over the interval [tex]\((- \infty, \infty)\)[/tex].
### Conclusion
Among the given options, the function that is increasing on the interval [tex]\((- \infty, \infty)\)[/tex] is:
[tex]\[ \boxed{h(x) = 2^x - 1} \][/tex]
### Function A: [tex]\( f(x) = -3x + 7 \)[/tex]
This is a linear function with a slope of [tex]\( -3 \)[/tex]. The slope tells us the rate of change of the function:
- If the slope is positive, the function is increasing.
- If the slope is negative, the function is decreasing.
Since the slope here is [tex]\( -3 \)[/tex] (which is negative), [tex]\( f(x) \)[/tex] is a decreasing function over the interval [tex]\((- \infty, \infty)\)[/tex].
### Function B: [tex]\( j(x) = x^2 + 8x + 1 \)[/tex]
This is a quadratic function, which typically takes the form [tex]\( ax^2 + bx + c \)[/tex]:
- For quadratic functions, the sign of the coefficient [tex]\( a \)[/tex] determines whether the parabola opens upwards or downwards.
- Here, [tex]\( a = 1 \)[/tex] (positive), so the parabola opens upwards, which implies it has a minimum point.
To determine the interval where [tex]\( j(x) \)[/tex] is increasing, we can find the vertex (the minimum point):
[tex]\[ x = -\frac{b}{2a} = -\frac{8}{2 \cdot 1} = -4 \][/tex]
- For [tex]\( x < -4 \)[/tex], [tex]\( j(x) \)[/tex] is decreasing.
- For [tex]\( x > -4 \)[/tex], [tex]\( j(x) \)[/tex] is increasing.
However, [tex]\( j(x) \)[/tex] is not increasing over the entire interval [tex]\((- \infty, \infty) \)[/tex], only for [tex]\( x > -4 \)[/tex].
### Function C: [tex]\( g(x) = -4 \cdot 2^x \)[/tex]
This is an exponential function multiplied by a negative constant:
- The base of the exponential function [tex]\( 2^x \)[/tex] grows exponentially.
- Multiplying by a negative constant [tex]\( -4 \)[/tex] reverses the direction of growth.
As a result, [tex]\( g(x) \)[/tex] is a decreasing function over the interval [tex]\((- \infty, \infty)\)[/tex].
### Function D: [tex]\( h(x) = 2^x - 1 \)[/tex]
This is also an exponential function:
- The base [tex]\( 2^x \)[/tex] grows exponentially.
- Subtracting 1 does not affect the direction of the growth, only shifts the graph vertically.
Since the base [tex]\( 2 \)[/tex] is greater than 1, the function [tex]\( 2^x \)[/tex] is always increasing. Thus, [tex]\( h(x) = 2^x - 1 \)[/tex] is also increasing over the interval [tex]\((- \infty, \infty)\)[/tex].
### Conclusion
Among the given options, the function that is increasing on the interval [tex]\((- \infty, \infty)\)[/tex] is:
[tex]\[ \boxed{h(x) = 2^x - 1} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.