Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, let's start with the properties of supplementary angles. When two angles are supplementary, the sum of their measures is [tex]\(180^\circ\)[/tex].
We are given that angle [tex]\(X\)[/tex] is 3 times the measure of angle [tex]\(Y\)[/tex]. Let's denote the measure of angle [tex]\(Y\)[/tex] by [tex]\(y\)[/tex]. Thus, the measure of angle [tex]\(X\)[/tex] can be represented as [tex]\(3y\)[/tex].
Given that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are supplementary:
[tex]\[ X + Y = 180^\circ \][/tex]
Substitute [tex]\(X = 3y\)[/tex]:
[tex]\[ 3y + y = 180^\circ \][/tex]
Combine like terms:
[tex]\[ 4y = 180^\circ \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{180^\circ}{4} \][/tex]
[tex]\[ y = 45^\circ \][/tex]
Now that we have the measure of angle [tex]\(Y\)[/tex], we can find the measure of angle [tex]\(X\)[/tex]:
[tex]\[ X = 3y \][/tex]
[tex]\[ X = 3 \times 45^\circ \][/tex]
[tex]\[ X = 135^\circ \][/tex]
Thus, the measure of angle [tex]\(X\)[/tex] is [tex]\(135^\circ\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
We are given that angle [tex]\(X\)[/tex] is 3 times the measure of angle [tex]\(Y\)[/tex]. Let's denote the measure of angle [tex]\(Y\)[/tex] by [tex]\(y\)[/tex]. Thus, the measure of angle [tex]\(X\)[/tex] can be represented as [tex]\(3y\)[/tex].
Given that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are supplementary:
[tex]\[ X + Y = 180^\circ \][/tex]
Substitute [tex]\(X = 3y\)[/tex]:
[tex]\[ 3y + y = 180^\circ \][/tex]
Combine like terms:
[tex]\[ 4y = 180^\circ \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{180^\circ}{4} \][/tex]
[tex]\[ y = 45^\circ \][/tex]
Now that we have the measure of angle [tex]\(Y\)[/tex], we can find the measure of angle [tex]\(X\)[/tex]:
[tex]\[ X = 3y \][/tex]
[tex]\[ X = 3 \times 45^\circ \][/tex]
[tex]\[ X = 135^\circ \][/tex]
Thus, the measure of angle [tex]\(X\)[/tex] is [tex]\(135^\circ\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.