Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Angles [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are supplementary. Angle [tex]\( X \)[/tex] is 3 times the measure of angle [tex]\( Y \)[/tex]. What is the measure of angle [tex]\( X \)[/tex]?

A. [tex]\( 45^{\circ} \)[/tex]

B. [tex]\( 60^{\circ} \)[/tex]

C. [tex]\( 120^{\circ} \)[/tex]

D. [tex]\( 135^{\circ} \)[/tex]

Sagot :

To solve this problem, let's start with the properties of supplementary angles. When two angles are supplementary, the sum of their measures is [tex]\(180^\circ\)[/tex].

We are given that angle [tex]\(X\)[/tex] is 3 times the measure of angle [tex]\(Y\)[/tex]. Let's denote the measure of angle [tex]\(Y\)[/tex] by [tex]\(y\)[/tex]. Thus, the measure of angle [tex]\(X\)[/tex] can be represented as [tex]\(3y\)[/tex].

Given that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are supplementary:
[tex]\[ X + Y = 180^\circ \][/tex]
Substitute [tex]\(X = 3y\)[/tex]:
[tex]\[ 3y + y = 180^\circ \][/tex]
Combine like terms:
[tex]\[ 4y = 180^\circ \][/tex]
Solve for [tex]\(y\)[/tex]:
[tex]\[ y = \frac{180^\circ}{4} \][/tex]
[tex]\[ y = 45^\circ \][/tex]

Now that we have the measure of angle [tex]\(Y\)[/tex], we can find the measure of angle [tex]\(X\)[/tex]:
[tex]\[ X = 3y \][/tex]
[tex]\[ X = 3 \times 45^\circ \][/tex]
[tex]\[ X = 135^\circ \][/tex]

Thus, the measure of angle [tex]\(X\)[/tex] is [tex]\(135^\circ\)[/tex].

Therefore, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]