Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Certainly! Let's break down the problem step-by-step.
Given:
- The probability of event [tex]\( A \)[/tex] is [tex]\( x \)[/tex].
- The probability of event [tex]\( B \)[/tex] is [tex]\( y \)[/tex].
- The two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
We need to find out which condition must be true:
A. [tex]\( P(A \mid B) = x \)[/tex]
B. [tex]\( P(A \mid B) = y \)[/tex]
C. [tex]\( P(B \mid A) = x \)[/tex]
D. [tex]\( P(B \mid A) = xy \)[/tex]
### Understanding Independence
When two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, the occurrence of one event does not affect the occurrence of the other. Mathematically, for independent events, the following holds true:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
### Conditional Probability
The conditional probability of [tex]\( A \)[/tex] given [tex]\( B \)[/tex] is defined as:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Since [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we substitute [tex]\( P(A \cap B) \)[/tex] using the property of independence:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) = x \cdot y \][/tex]
So,
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{x \cdot y}{y} \][/tex]
Provided [tex]\( P(B) = y \neq 0 \)[/tex], this simplifies to:
[tex]\[ P(A \mid B) = x \][/tex]
Thus, for independent events, the conditional probability [tex]\( P(A \mid B) \)[/tex] equals the probability of event [tex]\( A \)[/tex], which is [tex]\( x \)[/tex].
Considering the options:
- Option A: [tex]\( P(A \mid B) = x \)[/tex] — This is true.
- Option B: [tex]\( P(A \mid B) = y \)[/tex] — This is not true.
- Option C: [tex]\( P(B \mid A) = x \)[/tex] — This is not true.
- Option D: [tex]\( P(B \mid A) = xy \)[/tex] — This is not true.
Therefore, the correct answer is:
A. [tex]\( P(A \mid B) = x \)[/tex]
Given:
- The probability of event [tex]\( A \)[/tex] is [tex]\( x \)[/tex].
- The probability of event [tex]\( B \)[/tex] is [tex]\( y \)[/tex].
- The two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.
We need to find out which condition must be true:
A. [tex]\( P(A \mid B) = x \)[/tex]
B. [tex]\( P(A \mid B) = y \)[/tex]
C. [tex]\( P(B \mid A) = x \)[/tex]
D. [tex]\( P(B \mid A) = xy \)[/tex]
### Understanding Independence
When two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, the occurrence of one event does not affect the occurrence of the other. Mathematically, for independent events, the following holds true:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]
### Conditional Probability
The conditional probability of [tex]\( A \)[/tex] given [tex]\( B \)[/tex] is defined as:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]
Since [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we substitute [tex]\( P(A \cap B) \)[/tex] using the property of independence:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) = x \cdot y \][/tex]
So,
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{x \cdot y}{y} \][/tex]
Provided [tex]\( P(B) = y \neq 0 \)[/tex], this simplifies to:
[tex]\[ P(A \mid B) = x \][/tex]
Thus, for independent events, the conditional probability [tex]\( P(A \mid B) \)[/tex] equals the probability of event [tex]\( A \)[/tex], which is [tex]\( x \)[/tex].
Considering the options:
- Option A: [tex]\( P(A \mid B) = x \)[/tex] — This is true.
- Option B: [tex]\( P(A \mid B) = y \)[/tex] — This is not true.
- Option C: [tex]\( P(B \mid A) = x \)[/tex] — This is not true.
- Option D: [tex]\( P(B \mid A) = xy \)[/tex] — This is not true.
Therefore, the correct answer is:
A. [tex]\( P(A \mid B) = x \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.