At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Select the correct answer:

The probability of event [tex]\( A \)[/tex] is [tex]\( x \)[/tex], and the probability of event [tex]\( B \)[/tex] is [tex]\( y \)[/tex]. If the two events are independent, which condition must be true?

A. [tex]\( P(A \mid B) = x \)[/tex]
B. [tex]\( P(A \mid B) = y \)[/tex]
C. [tex]\( P(B \mid A) = x \)[/tex]
D. [tex]\( P(B \mid A) = xy \)[/tex]


Sagot :

Certainly! Let's break down the problem step-by-step.

Given:
- The probability of event [tex]\( A \)[/tex] is [tex]\( x \)[/tex].
- The probability of event [tex]\( B \)[/tex] is [tex]\( y \)[/tex].
- The two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent.

We need to find out which condition must be true:

A. [tex]\( P(A \mid B) = x \)[/tex]
B. [tex]\( P(A \mid B) = y \)[/tex]
C. [tex]\( P(B \mid A) = x \)[/tex]
D. [tex]\( P(B \mid A) = xy \)[/tex]

### Understanding Independence

When two events [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, the occurrence of one event does not affect the occurrence of the other. Mathematically, for independent events, the following holds true:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) \][/tex]

### Conditional Probability

The conditional probability of [tex]\( A \)[/tex] given [tex]\( B \)[/tex] is defined as:
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} \][/tex]

Since [tex]\( A \)[/tex] and [tex]\( B \)[/tex] are independent, we substitute [tex]\( P(A \cap B) \)[/tex] using the property of independence:
[tex]\[ P(A \cap B) = P(A) \cdot P(B) = x \cdot y \][/tex]

So,
[tex]\[ P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{x \cdot y}{y} \][/tex]
Provided [tex]\( P(B) = y \neq 0 \)[/tex], this simplifies to:
[tex]\[ P(A \mid B) = x \][/tex]

Thus, for independent events, the conditional probability [tex]\( P(A \mid B) \)[/tex] equals the probability of event [tex]\( A \)[/tex], which is [tex]\( x \)[/tex].

Considering the options:

- Option A: [tex]\( P(A \mid B) = x \)[/tex] — This is true.
- Option B: [tex]\( P(A \mid B) = y \)[/tex] — This is not true.
- Option C: [tex]\( P(B \mid A) = x \)[/tex] — This is not true.
- Option D: [tex]\( P(B \mid A) = xy \)[/tex] — This is not true.

Therefore, the correct answer is:

A. [tex]\( P(A \mid B) = x \)[/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.