Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine the percentage of snakes that are longer than 16.6 inches, we need to follow the steps for solving problems involving the normal distribution. Here's the detailed, step-by-step solution:
1. Identify the given values:
- Mean ([tex]\(\mu\)[/tex]) = 15 inches
- Standard deviation ([tex]\(\sigma\)[/tex]) = 0.8 inches
- Threshold length for comparison = 16.6 inches
2. Convert the length threshold to a z-score:
A z-score tells us how many standard deviations away from the mean a particular value lies. The formula for the z-score ([tex]\(z\)[/tex]) is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of interest (here, 16.6 inches).
Plugging in the values:
[tex]\[ z = \frac{16.6 - 15}{0.8} = \frac{1.6}{0.8} = 2 \][/tex]
So, the z-score for 16.6 inches is 2.
3. Find the cumulative probability associated with the calculated z-score:
We look up the z-score of 2 in the standard normal distribution table (or use a cumulative distribution function calculator) to find the probability that a randomly selected value from a normal distribution is less than or equal to the z-score.
The cumulative probability (also known as the cumulative distribution function, or CDF) for [tex]\(z = 2\)[/tex] is approximately 0.9772. This means that approximately 97.72% of the observations are less than or equal to 16.6 inches.
4. Calculate the probability of the snake being longer than 16.6 inches:
To find the percentage of snakes longer than 16.6 inches, we need to find the complementary probability (i.e., the probability that a snake's length is more than the threshold).
This is given by:
[tex]\[ P(X > 16.6) = 1 - P(X \leq 16.6) = 1 - 0.9772 = 0.0228 \][/tex]
Thus, the probability that a snake is longer than 16.6 inches is 0.0228 or 2.28%.
5. Convert the probability to a percentage:
[tex]\[ 0.0228 \times 100 = 2.28\% \][/tex]
Therefore, the percentage of snakes that are longer than 16.6 inches is approximately [tex]\(2.3\%\)[/tex].
Given the provided options, the correct answer is:
[tex]\[ 2.5\% \][/tex]
(Note: While the accurate value we calculated is 2.28%, the closest option is 2.5%.)
1. Identify the given values:
- Mean ([tex]\(\mu\)[/tex]) = 15 inches
- Standard deviation ([tex]\(\sigma\)[/tex]) = 0.8 inches
- Threshold length for comparison = 16.6 inches
2. Convert the length threshold to a z-score:
A z-score tells us how many standard deviations away from the mean a particular value lies. The formula for the z-score ([tex]\(z\)[/tex]) is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
where [tex]\(X\)[/tex] is the value of interest (here, 16.6 inches).
Plugging in the values:
[tex]\[ z = \frac{16.6 - 15}{0.8} = \frac{1.6}{0.8} = 2 \][/tex]
So, the z-score for 16.6 inches is 2.
3. Find the cumulative probability associated with the calculated z-score:
We look up the z-score of 2 in the standard normal distribution table (or use a cumulative distribution function calculator) to find the probability that a randomly selected value from a normal distribution is less than or equal to the z-score.
The cumulative probability (also known as the cumulative distribution function, or CDF) for [tex]\(z = 2\)[/tex] is approximately 0.9772. This means that approximately 97.72% of the observations are less than or equal to 16.6 inches.
4. Calculate the probability of the snake being longer than 16.6 inches:
To find the percentage of snakes longer than 16.6 inches, we need to find the complementary probability (i.e., the probability that a snake's length is more than the threshold).
This is given by:
[tex]\[ P(X > 16.6) = 1 - P(X \leq 16.6) = 1 - 0.9772 = 0.0228 \][/tex]
Thus, the probability that a snake is longer than 16.6 inches is 0.0228 or 2.28%.
5. Convert the probability to a percentage:
[tex]\[ 0.0228 \times 100 = 2.28\% \][/tex]
Therefore, the percentage of snakes that are longer than 16.6 inches is approximately [tex]\(2.3\%\)[/tex].
Given the provided options, the correct answer is:
[tex]\[ 2.5\% \][/tex]
(Note: While the accurate value we calculated is 2.28%, the closest option is 2.5%.)
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.