Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

The midpoint of [tex]\( MN \)[/tex] is point [tex]\( P \)[/tex] at [tex]\((-4, 6)\)[/tex]. If point [tex]\( M \)[/tex] is at [tex]\((8, -2)\)[/tex], what are the coordinates of point [tex]\( N \)[/tex]?

Show your work.


Sagot :

Sure, let's determine the coordinates of point [tex]\( N \)[/tex] using the information provided.

Given:
1. Midpoint [tex]\( P \)[/tex] is [tex]\( (-4, 6) \)[/tex].
2. Point [tex]\( M \)[/tex] is [tex]\( (8, -2) \)[/tex].

First, recall the midpoint formula. The midpoint [tex]\( P \)[/tex] of a line segment with endpoints [tex]\( M(x_1, y_1) \)[/tex] and [tex]\( N(x_2, y_2) \)[/tex] is given by:
[tex]\[ P \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

In this case:
[tex]\[ P \left( -4, 6 \right) \][/tex]
[tex]\[ M \left( 8, -2 \right) \][/tex]
We need to find the coordinates of [tex]\( N \)[/tex], say [tex]\( (x_2, y_2) \)[/tex].

From the midpoint formula, we have two equations:
1. [tex]\[ -4 = \frac{8 + x_2}{2} \][/tex]
2. [tex]\[ 6 = \frac{-2 + y_2}{2} \][/tex]

Solve for [tex]\( x_2 \)[/tex]:

[tex]\[ -4 = \frac{8 + x_2}{2} \][/tex]

Multiply both sides by 2 to clear the fraction:
[tex]\[ -8 = 8 + x_2 \][/tex]

Subtract 8 from both sides:
[tex]\[ -16 = x_2 \][/tex]

So, the x-coordinate of point [tex]\( N \)[/tex] is [tex]\(-16\)[/tex].

Solve for [tex]\( y_2 \)[/tex]:

[tex]\[ 6 = \frac{-2 + y_2}{2} \][/tex]

Multiply both sides by 2 to clear the fraction:
[tex]\[ 12 = -2 + y_2 \][/tex]

Add 2 to both sides:
[tex]\[ 14 = y_2 \][/tex]

So, the y-coordinate of point [tex]\( N \)[/tex] is [tex]\( 14 \)[/tex].

Therefore, the coordinates of point [tex]\( N \)[/tex] are [tex]\( (-16, 14) \)[/tex].