Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the correct statement among the given choices, we'll first determine the slope and the length of the line segment [tex]\(\overline{WX}\)[/tex], and then we'll understand how the dilation affects these quantities.
### Step 1: Compute the Slope of [tex]\(\overline{WX}\)[/tex]
To find the slope of the line segment [tex]\(\overline{WX}\)[/tex] which connects points [tex]\( W(3, 2) \)[/tex] and [tex]\( X(7, 5) \)[/tex], we use the slope formula:
[tex]\[ \text{slope of } \overline{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in our coordinates [tex]\(W(3, 2)\)[/tex] (i.e., [tex]\( x_1 = 3 \)[/tex] and [tex]\( y_1 = 2 \)[/tex]) and [tex]\(X(7, 5)\)[/tex] (i.e., [tex]\( x_2 = 7 \)[/tex] and [tex]\( y_2 = 5 \)[/tex]), we get:
[tex]\[ \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
### Step 2: Compute the Length of [tex]\(\overline{WX}\)[/tex]
To find the length of the segment [tex]\(\overline{WX}\)[/tex], we use the distance formula:
[tex]\[ \text{length of } \overline{WX} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates [tex]\(W(3, 2)\)[/tex] and [tex]\(X(7, 5)\)[/tex], we get:
[tex]\[ \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Step 3: Determine the Length After Dilation
Since the polygon is dilated by a scale factor of 3 with [tex]\( W(3, 2) \)[/tex] as the center of dilation, the length of [tex]\(\overline{WX}\)[/tex] after dilation will be:
[tex]\[ 5 \times 3 = 15 \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the original length of [tex]\(\overline{WX}\)[/tex] is 5. After dilation, the length is 15.
### Conclusion
The correct statement is:
C. The slope of [tex]\(\overline{W X}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W X}\)[/tex] is 5.
### Step 1: Compute the Slope of [tex]\(\overline{WX}\)[/tex]
To find the slope of the line segment [tex]\(\overline{WX}\)[/tex] which connects points [tex]\( W(3, 2) \)[/tex] and [tex]\( X(7, 5) \)[/tex], we use the slope formula:
[tex]\[ \text{slope of } \overline{WX} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Plugging in our coordinates [tex]\(W(3, 2)\)[/tex] (i.e., [tex]\( x_1 = 3 \)[/tex] and [tex]\( y_1 = 2 \)[/tex]) and [tex]\(X(7, 5)\)[/tex] (i.e., [tex]\( x_2 = 7 \)[/tex] and [tex]\( y_2 = 5 \)[/tex]), we get:
[tex]\[ \frac{5 - 2}{7 - 3} = \frac{3}{4} \][/tex]
### Step 2: Compute the Length of [tex]\(\overline{WX}\)[/tex]
To find the length of the segment [tex]\(\overline{WX}\)[/tex], we use the distance formula:
[tex]\[ \text{length of } \overline{WX} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Substituting the coordinates [tex]\(W(3, 2)\)[/tex] and [tex]\(X(7, 5)\)[/tex], we get:
[tex]\[ \sqrt{(7 - 3)^2 + (5 - 2)^2} = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5 \][/tex]
### Step 3: Determine the Length After Dilation
Since the polygon is dilated by a scale factor of 3 with [tex]\( W(3, 2) \)[/tex] as the center of dilation, the length of [tex]\(\overline{WX}\)[/tex] after dilation will be:
[tex]\[ 5 \times 3 = 15 \][/tex]
So, the slope of [tex]\(\overline{WX}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the original length of [tex]\(\overline{WX}\)[/tex] is 5. After dilation, the length is 15.
### Conclusion
The correct statement is:
C. The slope of [tex]\(\overline{W X}\)[/tex] is [tex]\(\frac{3}{4}\)[/tex], and the length of [tex]\(\overline{W X}\)[/tex] is 5.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.