Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

What is true about the completely simplified sum of the polynomials [tex]\( 3x^2y^2 - 2xy^5 \)[/tex] and [tex]\( -3x^2y^2 + 3x^4y \)[/tex]?

A. The sum is a trinomial with a degree of 5.
B. The sum is a trinomial with a degree of 6.
C. The sum is a binomial with a degree of 5.
D. The sum is a binomial with a degree of 6.


Sagot :

To determine the true nature of the completely simplified sum of the polynomials [tex]\(3 x^2 y^2 - 2 x y^5\)[/tex] and [tex]\(-3 x^2 y^2 + 3 x^4 y\)[/tex], let's analyze and simplify the given polynomials step-by-step. We will then determine the number of terms (whether it is a binomial or trinomial) and the degree of the simplified expression.

### Step 1: Combine the Polynomials
Given polynomials:
[tex]\[ P_1 = 3 x^2 y^2 - 2 x y^5 \][/tex]
[tex]\[ P_2 = -3 x^2 y^2 + 3 x^4 y \][/tex]

Now, add the polynomials together:
[tex]\[ P_{\text{sum}} = P_1 + P_2 \][/tex]
[tex]\[ P_{\text{sum}} = (3 x^2 y^2 - 2 x y^5) + (-3 x^2 y^2 + 3 x^4 y) \][/tex]

### Step 2: Simplify the Addition
Combine like terms to simplify:
[tex]\[ P_{\text{sum}} = (3 x^2 y^2 - 3 x^2 y^2) + (3 x^4 y - 2 x y^5) \][/tex]
[tex]\[ P_{\text{sum}} = 0 + (3 x^4 y - 2 x y^5) \][/tex]
[tex]\[ P_{\text{sum}} = 3 x^4 y - 2 x y^5 \][/tex]

### Step 3: Factor and Simplify Further (if Possible)
Factor out the common term [tex]\(x y\)[/tex]:
[tex]\[ P_{\text{sum}} = x y (3 x^3 - 2 y^4) \][/tex]

### Step 4: Determine the Number of Terms
The expression [tex]\( x y (3 x^3 - 2 y^4) \)[/tex] is a product of [tex]\(x y\)[/tex] and a binomial [tex]\( (3 x^3 - 2 y^4) \)[/tex]. Hence, [tex]\(x y (3 x^3 - 2 y^4)\)[/tex] is a binomial, where there are two distinct monomials being multiplied by [tex]\( x y \)[/tex].

### Step 5: Determine the Degree of the Polynomial
The degree of a polynomial is the highest sum of the exponents of the variables in any single term. We need to check the terms in:
[tex]\[ 3 x^4 y \quad \text{and} \quad -2 x y^5 \][/tex]

For [tex]\(3 x^4 y\)[/tex]:
- The degree is [tex]\(4 + 1 = 5\)[/tex].

For [tex]\(-2 x y^5\)[/tex]:
- The degree is [tex]\(1 + 5 = 6\)[/tex].

The highest degree among the terms is [tex]\(6\)[/tex].

### Conclusion
The completely simplified polynomial is:
[tex]\[ x y (3 x^3 - 2 y^4) \][/tex]

- It is a binomial.
- The degree of the polynomial is [tex]\(6\)[/tex].

So, the correct statement about the polynomial is:
- The sum is a binomial with a degree of 6.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.