At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's solve and simplify the expression [tex]\( x^3 + x^5 - x^7 \)[/tex].
To simplify the given expression, we need to look for common factors in each term.
The expression is:
[tex]\[ x^3 + x^5 - x^7 \][/tex]
1. First, identify the greatest common factor (GCF) of all the terms:
- The GCF of [tex]\( x^3 \)[/tex], [tex]\( x^5 \)[/tex], and [tex]\( x^7 \)[/tex] is [tex]\( x^3 \)[/tex], as it is the highest power of [tex]\( x \)[/tex] that can be factored out from each term.
2. Factor [tex]\( x^3 \)[/tex] out from each term:
[tex]\[ x^3 (1) + x^3 (x^2) - x^3 (x^4) \][/tex]
3. Simplify to:
[tex]\[ x^3 \left( 1 + x^2 - x^4 \right) \][/tex]
After factoring, we get:
[tex]\[ x^3 \left( 1 + x^2 - x^4 \right) \][/tex]
However, if we reconsider the expanded form, we observe that the simplest expression without further reduction is:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
Thus, the simplified expression for [tex]\( x^3 + x^5 - x^7 \)[/tex] remains:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
So the simplified form of [tex]\( x^3 + x^5 - x^7 \)[/tex] is:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
To simplify the given expression, we need to look for common factors in each term.
The expression is:
[tex]\[ x^3 + x^5 - x^7 \][/tex]
1. First, identify the greatest common factor (GCF) of all the terms:
- The GCF of [tex]\( x^3 \)[/tex], [tex]\( x^5 \)[/tex], and [tex]\( x^7 \)[/tex] is [tex]\( x^3 \)[/tex], as it is the highest power of [tex]\( x \)[/tex] that can be factored out from each term.
2. Factor [tex]\( x^3 \)[/tex] out from each term:
[tex]\[ x^3 (1) + x^3 (x^2) - x^3 (x^4) \][/tex]
3. Simplify to:
[tex]\[ x^3 \left( 1 + x^2 - x^4 \right) \][/tex]
After factoring, we get:
[tex]\[ x^3 \left( 1 + x^2 - x^4 \right) \][/tex]
However, if we reconsider the expanded form, we observe that the simplest expression without further reduction is:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
Thus, the simplified expression for [tex]\( x^3 + x^5 - x^7 \)[/tex] remains:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
So the simplified form of [tex]\( x^3 + x^5 - x^7 \)[/tex] is:
[tex]\[ -x^7 + x^5 + x^3 \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.