Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the temperature of the canister containing 75.0 liters of argon gas with 15.82 moles at a pressure of 546.8 kilopascals, we can use the ideal gas law, which is given by the equation:
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in pascals (Pa)
- [tex]\( V \)[/tex] is the volume in cubic meters (m³)
- [tex]\( n \)[/tex] is the number of moles
- [tex]\( R \)[/tex] is the ideal gas constant
- [tex]\( T \)[/tex] is the temperature in Kelvin
First, let's convert the given pressure from kilopascals to pascals:
[tex]\[ 546.8 \text{ kPa} = 546.8 \times 1000 \text{ Pa} = 546800 \text{ Pa} \][/tex]
Next, note that the volume is already in liters, so we convert it to cubic meters (since 1 liter = 0.001 cubic meters):
[tex]\[ 75.0 \text{ liters} = 75.0 \times 0.001 \text{ m}^3 = 0.075 \text{ m}^3 \][/tex]
We'll use the universal gas constant [tex]\( R \)[/tex] in the appropriate units (J/(mol K)):
[tex]\[ R = 8.314 \text{ J/(mol K)} \][/tex]
Now, we can rearrange the ideal gas law to solve for the temperature [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute known values into the equation:
[tex]\[ T = \frac{(546800 \text{ Pa}) \times (0.075 \text{ m}^3)}{(15.82 \text{ mol}) \times (8.314 \text{ J/(mol K)})} \][/tex]
[tex]\[ T = \frac{41010 \text{ (Pa m}^3)}{131.50948 \text{ (mol J/(mol K))}} \][/tex]
[tex]\[ T = 311797.9603958047 \text{ K} \][/tex]
Rounding this to three significant figures:
[tex]\[ T \approx 3.12 \times 10^5 \text{ K} \][/tex]
Thus, the temperature of the canister is [tex]\( 3.12 \times 10^5 \)[/tex] K.
[tex]\[ PV = nRT \][/tex]
where:
- [tex]\( P \)[/tex] is the pressure in pascals (Pa)
- [tex]\( V \)[/tex] is the volume in cubic meters (m³)
- [tex]\( n \)[/tex] is the number of moles
- [tex]\( R \)[/tex] is the ideal gas constant
- [tex]\( T \)[/tex] is the temperature in Kelvin
First, let's convert the given pressure from kilopascals to pascals:
[tex]\[ 546.8 \text{ kPa} = 546.8 \times 1000 \text{ Pa} = 546800 \text{ Pa} \][/tex]
Next, note that the volume is already in liters, so we convert it to cubic meters (since 1 liter = 0.001 cubic meters):
[tex]\[ 75.0 \text{ liters} = 75.0 \times 0.001 \text{ m}^3 = 0.075 \text{ m}^3 \][/tex]
We'll use the universal gas constant [tex]\( R \)[/tex] in the appropriate units (J/(mol K)):
[tex]\[ R = 8.314 \text{ J/(mol K)} \][/tex]
Now, we can rearrange the ideal gas law to solve for the temperature [tex]\( T \)[/tex]:
[tex]\[ T = \frac{PV}{nR} \][/tex]
Substitute known values into the equation:
[tex]\[ T = \frac{(546800 \text{ Pa}) \times (0.075 \text{ m}^3)}{(15.82 \text{ mol}) \times (8.314 \text{ J/(mol K)})} \][/tex]
[tex]\[ T = \frac{41010 \text{ (Pa m}^3)}{131.50948 \text{ (mol J/(mol K))}} \][/tex]
[tex]\[ T = 311797.9603958047 \text{ K} \][/tex]
Rounding this to three significant figures:
[tex]\[ T \approx 3.12 \times 10^5 \text{ K} \][/tex]
Thus, the temperature of the canister is [tex]\( 3.12 \times 10^5 \)[/tex] K.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.