Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the factored form of the expression [tex]\( a^2 - 121 \)[/tex], we can recognize that it fits the pattern of a difference of squares. The general form for factoring a difference of squares is:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, we can see that:
[tex]\[ a^2 - 121 \][/tex]
First, identify the square roots of the terms:
- [tex]\( a^2 \)[/tex] is [tex]\( (a)^2 \)[/tex]
- [tex]\( 121 \)[/tex] is [tex]\( (11)^2 \)[/tex]
This allows us to rewrite the expression as:
[tex]\[ a^2 - 11^2 \][/tex]
Now, using the difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex], we substitute [tex]\( a \)[/tex] for [tex]\( a \)[/tex] and [tex]\( b \)[/tex] for [tex]\( 11 \)[/tex]:
[tex]\[ a^2 - 11^2 = (a - 11)(a + 11) \][/tex]
So, the factored form of [tex]\( a^2 - 121 \)[/tex] is:
[tex]\[ (a - 11)(a + 11) \][/tex]
Therefore, the correct answer is:
[tex]\[ (a - 11)(a + 11) \][/tex]
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, we can see that:
[tex]\[ a^2 - 121 \][/tex]
First, identify the square roots of the terms:
- [tex]\( a^2 \)[/tex] is [tex]\( (a)^2 \)[/tex]
- [tex]\( 121 \)[/tex] is [tex]\( (11)^2 \)[/tex]
This allows us to rewrite the expression as:
[tex]\[ a^2 - 11^2 \][/tex]
Now, using the difference of squares formula [tex]\( a^2 - b^2 = (a - b)(a + b) \)[/tex], we substitute [tex]\( a \)[/tex] for [tex]\( a \)[/tex] and [tex]\( b \)[/tex] for [tex]\( 11 \)[/tex]:
[tex]\[ a^2 - 11^2 = (a - 11)(a + 11) \][/tex]
So, the factored form of [tex]\( a^2 - 121 \)[/tex] is:
[tex]\[ (a - 11)(a + 11) \][/tex]
Therefore, the correct answer is:
[tex]\[ (a - 11)(a + 11) \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.