Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's factor the trinomial [tex]\(x^2 + 10x + 16\)[/tex] step-by-step.
Step 1: Identify the coefficients
For the trinomial [tex]\(x^2 + 10x + 16\)[/tex]:
- The coefficient of [tex]\(x^2\)[/tex] (denoted as [tex]\(a\)[/tex]) is 1.
- The coefficient of [tex]\(x\)[/tex] (denoted as [tex]\(b\)[/tex]) is 10.
- The constant term (denoted as [tex]\(c\)[/tex]) is 16.
Step 2: Calculate the product of [tex]\(a\)[/tex] and [tex]\(c\)[/tex]
Calculate [tex]\(ac\)[/tex]:
[tex]\[ ac = 1 \times 16 = 16 \][/tex]
Step 3: Find two numbers that multiply to [tex]\(ac\)[/tex] and add to [tex]\(b\)[/tex]
We need to find two numbers that:
- Multiply to 16 (the product of [tex]\(ac\)[/tex]),
- Add up to 10 (the value of [tex]\(b\)[/tex]).
The pairs of factors of 16 are:
[tex]\[ (1, 16), (2, 8), (4, 4) \][/tex]
Among these pairs, the pair that adds up to 10 is (2, 8):
[tex]\[ 2 + 8 = 10 \][/tex]
Thus, the two numbers we are looking for are 2 and 8.
Step 4: Rewrite the middle term using the two numbers found
Rewrite [tex]\(10x\)[/tex] using 2 and 8:
[tex]\[ x^2 + 10x + 16 = x^2 + 2x + 8x + 16 \][/tex]
Step 5: Factor by grouping
Group the terms to factor by grouping:
[tex]\[ x^2 + 2x + 8x + 16 = (x^2 + 2x) + (8x + 16) \][/tex]
Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x + 2) + 8(x + 2) \][/tex]
Step 6: Factor out the common binomial factor
Notice that [tex]\((x + 2)\)[/tex] is a common factor:
[tex]\[ x(x + 2) + 8(x + 2) = (x + 2)(x + 8) \][/tex]
Step 7: Write the factored form
The factored form of the trinomial [tex]\(x^2 + 10x + 16\)[/tex] is:
[tex]\[ (x + 2)(x + 8) \][/tex]
Thus, we have successfully factored the trinomial [tex]\(x^2 + 10x + 16\)[/tex] into [tex]\((x + 2)(x + 8)\)[/tex].
Step 1: Identify the coefficients
For the trinomial [tex]\(x^2 + 10x + 16\)[/tex]:
- The coefficient of [tex]\(x^2\)[/tex] (denoted as [tex]\(a\)[/tex]) is 1.
- The coefficient of [tex]\(x\)[/tex] (denoted as [tex]\(b\)[/tex]) is 10.
- The constant term (denoted as [tex]\(c\)[/tex]) is 16.
Step 2: Calculate the product of [tex]\(a\)[/tex] and [tex]\(c\)[/tex]
Calculate [tex]\(ac\)[/tex]:
[tex]\[ ac = 1 \times 16 = 16 \][/tex]
Step 3: Find two numbers that multiply to [tex]\(ac\)[/tex] and add to [tex]\(b\)[/tex]
We need to find two numbers that:
- Multiply to 16 (the product of [tex]\(ac\)[/tex]),
- Add up to 10 (the value of [tex]\(b\)[/tex]).
The pairs of factors of 16 are:
[tex]\[ (1, 16), (2, 8), (4, 4) \][/tex]
Among these pairs, the pair that adds up to 10 is (2, 8):
[tex]\[ 2 + 8 = 10 \][/tex]
Thus, the two numbers we are looking for are 2 and 8.
Step 4: Rewrite the middle term using the two numbers found
Rewrite [tex]\(10x\)[/tex] using 2 and 8:
[tex]\[ x^2 + 10x + 16 = x^2 + 2x + 8x + 16 \][/tex]
Step 5: Factor by grouping
Group the terms to factor by grouping:
[tex]\[ x^2 + 2x + 8x + 16 = (x^2 + 2x) + (8x + 16) \][/tex]
Factor out the greatest common factor (GCF) from each group:
[tex]\[ x(x + 2) + 8(x + 2) \][/tex]
Step 6: Factor out the common binomial factor
Notice that [tex]\((x + 2)\)[/tex] is a common factor:
[tex]\[ x(x + 2) + 8(x + 2) = (x + 2)(x + 8) \][/tex]
Step 7: Write the factored form
The factored form of the trinomial [tex]\(x^2 + 10x + 16\)[/tex] is:
[tex]\[ (x + 2)(x + 8) \][/tex]
Thus, we have successfully factored the trinomial [tex]\(x^2 + 10x + 16\)[/tex] into [tex]\((x + 2)(x + 8)\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.