At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! To factor the polynomial [tex]\(x^3 + 2x^2 + 12x + 24\)[/tex] using the grouping method, follow these steps:
1. Group the terms:
Split the polynomial into two groups that can be factored separately:
[tex]\[ x^3 + 2x^2 + 12x + 24 = (x^3 + 2x^2) + (12x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- From the first group [tex]\(x^3 + 2x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^3 + 2x^2 = x^2(x + 2) \][/tex]
- From the second group [tex]\(12x + 24\)[/tex], we can factor out [tex]\(12\)[/tex]:
[tex]\[ 12x + 24 = 12(x + 2) \][/tex]
3. Combine the factored groups:
After factoring each group, we get:
[tex]\[ x^3 + 2x^2 + 12x + 24 = x^2(x + 2) + 12(x + 2) \][/tex]
4. Factor out the common binomial factor [tex]\((x + 2)\)[/tex]:
Notice that both terms have a common factor of [tex]\((x + 2)\)[/tex]:
[tex]\[ x^2(x + 2) + 12(x + 2) = (x^2 + 12)(x + 2) \][/tex]
Thus, the polynomial [tex]\(x^3 + 2x^2 + 12x + 24\)[/tex] can be factored as:
[tex]\[ (x^2 + 12)(x + 2) \][/tex]
Given the choices:
- A. [tex]\(\left(x^2+6\right)(x+2)\)[/tex]
- B. [tex]\(\left(x^2+2\right)(x+12)\)[/tex]
- C. [tex]\(\left(x^2+2\right)(x+6)\)[/tex]
- D. [tex]\(\left(x^2+12\right)(x+2)\)[/tex]
The correct option is:
[tex]\[ \boxed{(x^2 + 12)(x + 2)} \][/tex]
Therefore, the correct choice is [tex]\( \text{D} \)[/tex].
1. Group the terms:
Split the polynomial into two groups that can be factored separately:
[tex]\[ x^3 + 2x^2 + 12x + 24 = (x^3 + 2x^2) + (12x + 24) \][/tex]
2. Factor out the greatest common factor (GCF) from each group:
- From the first group [tex]\(x^3 + 2x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^3 + 2x^2 = x^2(x + 2) \][/tex]
- From the second group [tex]\(12x + 24\)[/tex], we can factor out [tex]\(12\)[/tex]:
[tex]\[ 12x + 24 = 12(x + 2) \][/tex]
3. Combine the factored groups:
After factoring each group, we get:
[tex]\[ x^3 + 2x^2 + 12x + 24 = x^2(x + 2) + 12(x + 2) \][/tex]
4. Factor out the common binomial factor [tex]\((x + 2)\)[/tex]:
Notice that both terms have a common factor of [tex]\((x + 2)\)[/tex]:
[tex]\[ x^2(x + 2) + 12(x + 2) = (x^2 + 12)(x + 2) \][/tex]
Thus, the polynomial [tex]\(x^3 + 2x^2 + 12x + 24\)[/tex] can be factored as:
[tex]\[ (x^2 + 12)(x + 2) \][/tex]
Given the choices:
- A. [tex]\(\left(x^2+6\right)(x+2)\)[/tex]
- B. [tex]\(\left(x^2+2\right)(x+12)\)[/tex]
- C. [tex]\(\left(x^2+2\right)(x+6)\)[/tex]
- D. [tex]\(\left(x^2+12\right)(x+2)\)[/tex]
The correct option is:
[tex]\[ \boxed{(x^2 + 12)(x + 2)} \][/tex]
Therefore, the correct choice is [tex]\( \text{D} \)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.