Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the area of the sector [tex]\(AOB\)[/tex] given the values [tex]\(OA = 5\)[/tex] and [tex]\(\frac{\text{length of arc A}}{\text{circumference}} = \frac{1}{4}\)[/tex], we can perform the following steps:
1. Calculate the circumference of the circle:
- The formula for the circumference of a circle is given by [tex]\(C = 2\pi r\)[/tex].
- Here, [tex]\(r = OA = 5\)[/tex], and [tex]\(\pi = 3.14\)[/tex].
- Thus, [tex]\(C = 2 \times 3.14 \times 5 = 31.4\)[/tex].
2. Find the length of the arc [tex]\(A\)[/tex]:
- The arc length is a fraction of the circumference.
- Given the fraction is [tex]\(\frac{1}{4}\)[/tex], the length of arc [tex]\(A\)[/tex] is [tex]\(\frac{1}{4} \times 31.4 = 7.85\)[/tex].
3. Determine the angle of the sector [tex]\(AOB\)[/tex]:
- Because the arc represents [tex]\(\frac{1}{4}\)[/tex] of the circle, the angle of the sector in radians is [tex]\(\frac{1}{4} \times 2\pi\)[/tex].
- [tex]\(2\pi\)[/tex] is approximately [tex]\(2 \times 3.14 = 6.28\)[/tex].
- Thus, the angle of the sector is [tex]\(\frac{1}{4} \times 6.28 = 1.57\)[/tex] radians.
4. Calculate the area of sector [tex]\(AOB\)[/tex]:
- The formula for the area of a sector is [tex]\(\text{Area} = \frac{\theta}{2\pi} \times \pi r^2\)[/tex], where [tex]\(\theta\)[/tex] is the angle in radians.
- Here, [tex]\(\theta = 1.57\)[/tex] and [tex]\(r = 5\)[/tex].
- Substituting the values, we get:
[tex]\[ \text{Area} = \frac{1.57}{2 \times 3.14} \times 3.14 \times (5^2) \][/tex]
- Simplifying this, we find:
[tex]\[ \text{Area} = \frac{1.57}{6.28} \times 78.5 = 0.25 \times 78.5 = 19.625 \][/tex]
Therefore, the area of sector [tex]\(AOB\)[/tex] is closest to option [tex]\(A\)[/tex], which is 19.6 square units. So, the correct answer is:
A. 19.6 square units
1. Calculate the circumference of the circle:
- The formula for the circumference of a circle is given by [tex]\(C = 2\pi r\)[/tex].
- Here, [tex]\(r = OA = 5\)[/tex], and [tex]\(\pi = 3.14\)[/tex].
- Thus, [tex]\(C = 2 \times 3.14 \times 5 = 31.4\)[/tex].
2. Find the length of the arc [tex]\(A\)[/tex]:
- The arc length is a fraction of the circumference.
- Given the fraction is [tex]\(\frac{1}{4}\)[/tex], the length of arc [tex]\(A\)[/tex] is [tex]\(\frac{1}{4} \times 31.4 = 7.85\)[/tex].
3. Determine the angle of the sector [tex]\(AOB\)[/tex]:
- Because the arc represents [tex]\(\frac{1}{4}\)[/tex] of the circle, the angle of the sector in radians is [tex]\(\frac{1}{4} \times 2\pi\)[/tex].
- [tex]\(2\pi\)[/tex] is approximately [tex]\(2 \times 3.14 = 6.28\)[/tex].
- Thus, the angle of the sector is [tex]\(\frac{1}{4} \times 6.28 = 1.57\)[/tex] radians.
4. Calculate the area of sector [tex]\(AOB\)[/tex]:
- The formula for the area of a sector is [tex]\(\text{Area} = \frac{\theta}{2\pi} \times \pi r^2\)[/tex], where [tex]\(\theta\)[/tex] is the angle in radians.
- Here, [tex]\(\theta = 1.57\)[/tex] and [tex]\(r = 5\)[/tex].
- Substituting the values, we get:
[tex]\[ \text{Area} = \frac{1.57}{2 \times 3.14} \times 3.14 \times (5^2) \][/tex]
- Simplifying this, we find:
[tex]\[ \text{Area} = \frac{1.57}{6.28} \times 78.5 = 0.25 \times 78.5 = 19.625 \][/tex]
Therefore, the area of sector [tex]\(AOB\)[/tex] is closest to option [tex]\(A\)[/tex], which is 19.6 square units. So, the correct answer is:
A. 19.6 square units
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.