Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the domain of the function [tex]\( y = \ln \left( \frac{-x+3}{2} \right) \)[/tex], we must ensure that the argument of the natural logarithm is positive. Specifically, the expression [tex]\( \ln(a) \)[/tex] is only defined for [tex]\( a > 0 \)[/tex].
Given our function [tex]\( y = \ln \left( \frac{-x+3}{2} \right) \)[/tex], we need:
[tex]\[ \frac{-x+3}{2} > 0 \][/tex]
To solve this inequality:
1. Start by isolating the fraction:
[tex]\[ \frac{-x+3}{2} > 0 \][/tex]
2. Multiply both sides of the inequality by 2 to clear the denominator:
[tex]\[ -x + 3 > 0 \][/tex]
3. Now, solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ -x + 3 > 0 \][/tex]
[tex]\[ -x > -3 \][/tex]
4. Divide both sides by [tex]\(-1\)[/tex]. Remember, dividing or multiplying both sides of an inequality by a negative number reverses the inequality sign:
[tex]\[ x < 3 \][/tex]
Thus, the domain of the function [tex]\( y = \ln \left( \frac{-x+3}{2} \right) \)[/tex] is all [tex]\( x \)[/tex] values such that [tex]\( x < 3 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x < 3 \][/tex]
Given our function [tex]\( y = \ln \left( \frac{-x+3}{2} \right) \)[/tex], we need:
[tex]\[ \frac{-x+3}{2} > 0 \][/tex]
To solve this inequality:
1. Start by isolating the fraction:
[tex]\[ \frac{-x+3}{2} > 0 \][/tex]
2. Multiply both sides of the inequality by 2 to clear the denominator:
[tex]\[ -x + 3 > 0 \][/tex]
3. Now, solve for [tex]\( x \)[/tex] by isolating [tex]\( x \)[/tex]:
[tex]\[ -x + 3 > 0 \][/tex]
[tex]\[ -x > -3 \][/tex]
4. Divide both sides by [tex]\(-1\)[/tex]. Remember, dividing or multiplying both sides of an inequality by a negative number reverses the inequality sign:
[tex]\[ x < 3 \][/tex]
Thus, the domain of the function [tex]\( y = \ln \left( \frac{-x+3}{2} \right) \)[/tex] is all [tex]\( x \)[/tex] values such that [tex]\( x < 3 \)[/tex].
Therefore, the correct answer is:
[tex]\[ x < 3 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.