At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve the equation [tex]\(\sqrt{a} = a - 6\)[/tex], follow these steps:
1. Square both sides of the equation to eliminate the square root:
[tex]\[ (\sqrt{a})^2 = (a - 6)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ a = (a - 6)^2 \][/tex]
2. Expand the right side:
[tex]\[ a = a^2 - 12a + 36 \][/tex]
3. Rearrange the equation to the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 0 = a^2 - 12a + 36 - a \][/tex]
Simplifying, we get:
[tex]\[ 0 = a^2 - 13a + 36 \][/tex]
4. Solve the quadratic equation [tex]\(a^2 - 13a + 36 = 0\)[/tex]. Factoring, we have:
[tex]\[ a^2 - 13a + 36 = (a - 4)(a - 9) = 0 \][/tex]
5. Set each factor equal to zero and solve for [tex]\(a\)[/tex]:
[tex]\[ a - 4 = 0 \quad \Rightarrow \quad a = 4 \][/tex]
[tex]\[ a - 9 = 0 \quad \Rightarrow \quad a = 9 \][/tex]
6. Check both solutions in the original equation [tex]\(\sqrt{a} = a - 6\)[/tex]:
- For [tex]\(a = 4\)[/tex]:
[tex]\[ \sqrt{4} = 4 - 6 \quad \Rightarrow \quad 2 = -2 \quad (\text{false}) \][/tex]
Thus, [tex]\(a = 4\)[/tex] is an extraneous solution.
- For [tex]\(a = 9\)[/tex]:
[tex]\[ \sqrt{9} = 9 - 6 \quad \Rightarrow \quad 3 = 3 \quad (\text{true}) \][/tex]
Thus, [tex]\(a = 9\)[/tex] is a valid solution.
Therefore, the extraneous solution is [tex]\(\boxed{4}\)[/tex].
1. Square both sides of the equation to eliminate the square root:
[tex]\[ (\sqrt{a})^2 = (a - 6)^2 \][/tex]
Simplifying both sides, we get:
[tex]\[ a = (a - 6)^2 \][/tex]
2. Expand the right side:
[tex]\[ a = a^2 - 12a + 36 \][/tex]
3. Rearrange the equation to the standard quadratic form [tex]\(ax^2 + bx + c = 0\)[/tex]:
[tex]\[ 0 = a^2 - 12a + 36 - a \][/tex]
Simplifying, we get:
[tex]\[ 0 = a^2 - 13a + 36 \][/tex]
4. Solve the quadratic equation [tex]\(a^2 - 13a + 36 = 0\)[/tex]. Factoring, we have:
[tex]\[ a^2 - 13a + 36 = (a - 4)(a - 9) = 0 \][/tex]
5. Set each factor equal to zero and solve for [tex]\(a\)[/tex]:
[tex]\[ a - 4 = 0 \quad \Rightarrow \quad a = 4 \][/tex]
[tex]\[ a - 9 = 0 \quad \Rightarrow \quad a = 9 \][/tex]
6. Check both solutions in the original equation [tex]\(\sqrt{a} = a - 6\)[/tex]:
- For [tex]\(a = 4\)[/tex]:
[tex]\[ \sqrt{4} = 4 - 6 \quad \Rightarrow \quad 2 = -2 \quad (\text{false}) \][/tex]
Thus, [tex]\(a = 4\)[/tex] is an extraneous solution.
- For [tex]\(a = 9\)[/tex]:
[tex]\[ \sqrt{9} = 9 - 6 \quad \Rightarrow \quad 3 = 3 \quad (\text{true}) \][/tex]
Thus, [tex]\(a = 9\)[/tex] is a valid solution.
Therefore, the extraneous solution is [tex]\(\boxed{4}\)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.