Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which equation could be Sandra's, we'll analyze the given equations and see if they have the same solutions as Tomas's equation, [tex]\( y = 3x + \frac{3}{4} \)[/tex].
Let's start by examining each of the given equations one at a time:
1. For the equation [tex]\(-6x + y = \frac{3}{2}\)[/tex]:
Rewrite Tomas's equation [tex]\( y = 3x + \frac{3}{4} \)[/tex] in such a way that we can substitute [tex]\( y \)[/tex]:
[tex]\[ y = 3x + \frac{3}{4} \][/tex]
Substitute [tex]\( y \)[/tex] in Sandra's equation:
[tex]\[ -6x + (3x + \frac{3}{4}) = \frac{3}{2} \][/tex]
Simplify:
[tex]\[ -6x + 3x + \frac{3}{4} = \frac{3}{2} \][/tex]
[tex]\[ -3x + \frac{3}{4} = \frac{3}{2} \][/tex]
To isolate [tex]\( x \)[/tex], move [tex]\(\frac{3}{4} \)[/tex] to the other side:
[tex]\[ -3x = \frac{3}{2} - \frac{3}{4} \][/tex]
Find a common denominator to combine the fractions:
[tex]\[ -3x = \frac{6}{4} - \frac{3}{4} \][/tex]
[tex]\[ -3x = \frac{3}{4} \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = -\frac{1}{4} \][/tex]
Substitute [tex]\( x = -\frac{1}{4} \)[/tex] back into Tomas's equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 3(-\frac{1}{4}) + \frac{3}{4} \][/tex]
[tex]\[ y = -\frac{3}{4} + \frac{3}{4} \][/tex]
[tex]\[ y = 0 \][/tex]
Check if [tex]\((-\frac{1}{4}, 0)\)[/tex] satisfies [tex]\(-6x + y = \frac{3}{2}\)[/tex]:
[tex]\[ -6(-\frac{1}{4}) + 0 = \frac{3}{2} \][/tex]
[tex]\[ \frac{3}{2} = \frac{3}{2} \][/tex]
It holds true, so Sandra's equation [tex]\(-6x + y = \frac{3}{2}\)[/tex] has all the same solutions as Tomas's.
2. For the other equations, similar analysis shows:
[tex]\[ 6x + y = \frac{3}{2} \][/tex]
does not yield consistent solutions with Tomas's equation.
[tex]\[ -6x + 2y = \frac{3}{2} \][/tex]
also does not yield consistent solutions with Tomas's equation.
[tex]\[ 6x + 2y = \frac{3}{2} \][/tex]
lastly, also fails to have consistent solutions.
Hence, the correct equation that Sandra could have written, which has all the same solutions as Tomas's equation [tex]\(y = 3x + \frac{3}{4}\)[/tex], is:
[tex]\[ -6x + y = \frac{3}{2} \][/tex]
Therefore, the answer to which equation Sandra could have written is:
[tex]\[ \boxed{1} \][/tex]
Let's start by examining each of the given equations one at a time:
1. For the equation [tex]\(-6x + y = \frac{3}{2}\)[/tex]:
Rewrite Tomas's equation [tex]\( y = 3x + \frac{3}{4} \)[/tex] in such a way that we can substitute [tex]\( y \)[/tex]:
[tex]\[ y = 3x + \frac{3}{4} \][/tex]
Substitute [tex]\( y \)[/tex] in Sandra's equation:
[tex]\[ -6x + (3x + \frac{3}{4}) = \frac{3}{2} \][/tex]
Simplify:
[tex]\[ -6x + 3x + \frac{3}{4} = \frac{3}{2} \][/tex]
[tex]\[ -3x + \frac{3}{4} = \frac{3}{2} \][/tex]
To isolate [tex]\( x \)[/tex], move [tex]\(\frac{3}{4} \)[/tex] to the other side:
[tex]\[ -3x = \frac{3}{2} - \frac{3}{4} \][/tex]
Find a common denominator to combine the fractions:
[tex]\[ -3x = \frac{6}{4} - \frac{3}{4} \][/tex]
[tex]\[ -3x = \frac{3}{4} \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = -\frac{1}{4} \][/tex]
Substitute [tex]\( x = -\frac{1}{4} \)[/tex] back into Tomas's equation to find [tex]\( y \)[/tex]:
[tex]\[ y = 3(-\frac{1}{4}) + \frac{3}{4} \][/tex]
[tex]\[ y = -\frac{3}{4} + \frac{3}{4} \][/tex]
[tex]\[ y = 0 \][/tex]
Check if [tex]\((-\frac{1}{4}, 0)\)[/tex] satisfies [tex]\(-6x + y = \frac{3}{2}\)[/tex]:
[tex]\[ -6(-\frac{1}{4}) + 0 = \frac{3}{2} \][/tex]
[tex]\[ \frac{3}{2} = \frac{3}{2} \][/tex]
It holds true, so Sandra's equation [tex]\(-6x + y = \frac{3}{2}\)[/tex] has all the same solutions as Tomas's.
2. For the other equations, similar analysis shows:
[tex]\[ 6x + y = \frac{3}{2} \][/tex]
does not yield consistent solutions with Tomas's equation.
[tex]\[ -6x + 2y = \frac{3}{2} \][/tex]
also does not yield consistent solutions with Tomas's equation.
[tex]\[ 6x + 2y = \frac{3}{2} \][/tex]
lastly, also fails to have consistent solutions.
Hence, the correct equation that Sandra could have written, which has all the same solutions as Tomas's equation [tex]\(y = 3x + \frac{3}{4}\)[/tex], is:
[tex]\[ -6x + y = \frac{3}{2} \][/tex]
Therefore, the answer to which equation Sandra could have written is:
[tex]\[ \boxed{1} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.