Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine how the [tex]\( y \)[/tex]-values in the table grow, let's analyze the ratio in which [tex]\( y \)[/tex]-values increase as [tex]\( x \)[/tex]-values increase.
First, let's examine the pairs of consecutive [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex]
- When [tex]\( x = 2 \)[/tex], [tex]\( y = 49 \)[/tex]
- When [tex]\( x = 4 \)[/tex], [tex]\( y = 2401 \)[/tex]
- When [tex]\( x = 6 \)[/tex], [tex]\( y = 117649 \)[/tex]
We'll compare each successive [tex]\( y \)[/tex]-value with its preceding value:
1. From [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{y(2)}{y(0)} = \frac{49}{1} = 49 \][/tex]
2. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{y(4)}{y(2)} = \frac{2401}{49} = 49 \][/tex]
3. From [tex]\( x = 4 \)[/tex] to [tex]\( x = 6 \)[/tex]:
[tex]\[ \frac{y(6)}{y(4)} = \frac{117649}{2401} = 49 \][/tex]
From these calculations, we see that each step (increase in [tex]\( x \)[/tex] by 2) results in the [tex]\( y \)[/tex]-value being multiplied by 49.
Now, because the [tex]\( x \)[/tex]-values increase by 2 each time but we want to find the factor in terms of each single unit increase in [tex]\( x \)[/tex], we need to consider this adjustment. Each multiplication factor for a [tex]\( \Delta x \)[/tex] of 2 results in:
[tex]\[ 49 \approx 7^2 \][/tex]
Thus, for each unit increase in [tex]\( x \)[/tex]:
[tex]\[ y \text{ increases by a factor of } 7^1 = 7 \][/tex]
Therefore, the [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
Hence, the correct answer is:
- The [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
First, let's examine the pairs of consecutive [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values given:
- When [tex]\( x = 0 \)[/tex], [tex]\( y = 1 \)[/tex]
- When [tex]\( x = 2 \)[/tex], [tex]\( y = 49 \)[/tex]
- When [tex]\( x = 4 \)[/tex], [tex]\( y = 2401 \)[/tex]
- When [tex]\( x = 6 \)[/tex], [tex]\( y = 117649 \)[/tex]
We'll compare each successive [tex]\( y \)[/tex]-value with its preceding value:
1. From [tex]\( x = 0 \)[/tex] to [tex]\( x = 2 \)[/tex]:
[tex]\[ \frac{y(2)}{y(0)} = \frac{49}{1} = 49 \][/tex]
2. From [tex]\( x = 2 \)[/tex] to [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{y(4)}{y(2)} = \frac{2401}{49} = 49 \][/tex]
3. From [tex]\( x = 4 \)[/tex] to [tex]\( x = 6 \)[/tex]:
[tex]\[ \frac{y(6)}{y(4)} = \frac{117649}{2401} = 49 \][/tex]
From these calculations, we see that each step (increase in [tex]\( x \)[/tex] by 2) results in the [tex]\( y \)[/tex]-value being multiplied by 49.
Now, because the [tex]\( x \)[/tex]-values increase by 2 each time but we want to find the factor in terms of each single unit increase in [tex]\( x \)[/tex], we need to consider this adjustment. Each multiplication factor for a [tex]\( \Delta x \)[/tex] of 2 results in:
[tex]\[ 49 \approx 7^2 \][/tex]
Thus, for each unit increase in [tex]\( x \)[/tex]:
[tex]\[ y \text{ increases by a factor of } 7^1 = 7 \][/tex]
Therefore, the [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
Hence, the correct answer is:
- The [tex]\( y \)[/tex]-values increase by a factor of 7 for each [tex]\( x \)[/tex] increase of 1.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.