Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given options is an example of a complex number that is not in the set of real numbers, we will analyze each option one by one:
1. Option [tex]$-7$[/tex]:
This is a real number. Real numbers are all the numbers that can be found on the number line, including both positive and negative numbers, as well as zero. [tex]$-7$[/tex] does not have an imaginary part.
2. Option [tex]$2+\sqrt{3}$[/tex]:
Here, [tex]$2$[/tex] and [tex]$\sqrt{3}$[/tex] are both real numbers. This is simply a sum of two real numbers, which results in a real number. Therefore, it is not a complex number with an imaginary component.
3. Option [tex]$4+9i$[/tex]:
This is a complex number, where [tex]$4$[/tex] is the real part and [tex]$9i$[/tex] is the imaginary part. Since it has a non-zero imaginary part ([tex]$9i$[/tex]), it is considered a complex number that is not in the set of real numbers.
4. Option [tex]$\pi$[/tex]:
[tex]$\pi$[/tex] is a real number. It is an irrational number, but still falls within the set of real numbers. It does not have an imaginary part.
Among the options, [tex]$4+9i$[/tex] is the example of a complex number that is not in the set of real numbers because it includes the imaginary unit [tex]$i$[/tex]. Thus, the correct answer is:
[tex]$4 + 9 i$[/tex]
1. Option [tex]$-7$[/tex]:
This is a real number. Real numbers are all the numbers that can be found on the number line, including both positive and negative numbers, as well as zero. [tex]$-7$[/tex] does not have an imaginary part.
2. Option [tex]$2+\sqrt{3}$[/tex]:
Here, [tex]$2$[/tex] and [tex]$\sqrt{3}$[/tex] are both real numbers. This is simply a sum of two real numbers, which results in a real number. Therefore, it is not a complex number with an imaginary component.
3. Option [tex]$4+9i$[/tex]:
This is a complex number, where [tex]$4$[/tex] is the real part and [tex]$9i$[/tex] is the imaginary part. Since it has a non-zero imaginary part ([tex]$9i$[/tex]), it is considered a complex number that is not in the set of real numbers.
4. Option [tex]$\pi$[/tex]:
[tex]$\pi$[/tex] is a real number. It is an irrational number, but still falls within the set of real numbers. It does not have an imaginary part.
Among the options, [tex]$4+9i$[/tex] is the example of a complex number that is not in the set of real numbers because it includes the imaginary unit [tex]$i$[/tex]. Thus, the correct answer is:
[tex]$4 + 9 i$[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.