Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's analyze the given complex numbers and find their absolute values to determine which one has an absolute value of 5.
A complex number is given in the form [tex]\( a + bi \)[/tex], where [tex]\( a \)[/tex] is the real part and [tex]\( b \)[/tex] is the imaginary part. The absolute value (or modulus) of a complex number [tex]\( a + bi \)[/tex] is calculated using the formula:
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Now, let's find the absolute values of the given complex numbers:
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{(2)^2 + (3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605 \][/tex]
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.280 \][/tex]
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{(9)^2 + (4)^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.849 \][/tex]
Among the given complex numbers, we see that the absolute value of the complex number [tex]\(-3 + 4i\)[/tex] is 5.
Therefore, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
A complex number is given in the form [tex]\( a + bi \)[/tex], where [tex]\( a \)[/tex] is the real part and [tex]\( b \)[/tex] is the imaginary part. The absolute value (or modulus) of a complex number [tex]\( a + bi \)[/tex] is calculated using the formula:
[tex]\[ |a + bi| = \sqrt{a^2 + b^2} \][/tex]
Now, let's find the absolute values of the given complex numbers:
1. For the complex number [tex]\(-3 + 4i\)[/tex]:
[tex]\[ | -3 + 4i | = \sqrt{(-3)^2 + (4)^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \][/tex]
2. For the complex number [tex]\(2 + 3i\)[/tex]:
[tex]\[ | 2 + 3i | = \sqrt{(2)^2 + (3)^2} = \sqrt{4 + 9} = \sqrt{13} \approx 3.605 \][/tex]
3. For the complex number [tex]\(7 - 2i\)[/tex]:
[tex]\[ | 7 - 2i | = \sqrt{(7)^2 + (-2)^2} = \sqrt{49 + 4} = \sqrt{53} \approx 7.280 \][/tex]
4. For the complex number [tex]\(9 + 4i\)[/tex]:
[tex]\[ | 9 + 4i | = \sqrt{(9)^2 + (4)^2} = \sqrt{81 + 16} = \sqrt{97} \approx 9.849 \][/tex]
Among the given complex numbers, we see that the absolute value of the complex number [tex]\(-3 + 4i\)[/tex] is 5.
Therefore, the complex number [tex]\(-3 + 4i\)[/tex] has an absolute value of 5.
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.