At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, we need to find the energy of a photon given its frequency and Planck's constant.
1. Identify the given values:
- Frequency of the photon ([tex]\(f\)[/tex]): [tex]\(2.9 \times 10^{-16} \, \text{Hz}\)[/tex]
- Planck's constant ([tex]\(h\)[/tex]): [tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
2. Use the formula to calculate the energy of the photon:
[tex]\[ E = h \times f \][/tex]
where [tex]\(E\)[/tex] is the energy, [tex]\(h\)[/tex] is Planck's constant, and [tex]\(f\)[/tex] is the frequency.
3. Substitute the given values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (2.9 \times 10^{-16} \, \text{Hz}) \][/tex]
4. Perform the multiplication:
[tex]\[ E = 1.9227 \times 10^{-49} \, \text{J} \][/tex]
5. Express the energy in the required format (nearest tenths place in the form of [tex]\(x \times 10^{-49} \, \text{J}\)[/tex]):
The calculated energy [tex]\(E = 1.9227 \times 10^{-49} \, \text{J}\)[/tex] can be rounded to the nearest tenths place.
6. Rounding the energy to the nearest tenths place:
[tex]\[ 1.9227 \approx 1.9 \][/tex]
So, the energy of the photon, to the nearest tenths place, is [tex]\(1.9 \times 10^{-49} \, \text{J}\)[/tex].
1. Identify the given values:
- Frequency of the photon ([tex]\(f\)[/tex]): [tex]\(2.9 \times 10^{-16} \, \text{Hz}\)[/tex]
- Planck's constant ([tex]\(h\)[/tex]): [tex]\(6.63 \times 10^{-34} \, \text{J} \cdot \text{s}\)[/tex]
2. Use the formula to calculate the energy of the photon:
[tex]\[ E = h \times f \][/tex]
where [tex]\(E\)[/tex] is the energy, [tex]\(h\)[/tex] is Planck's constant, and [tex]\(f\)[/tex] is the frequency.
3. Substitute the given values into the formula:
[tex]\[ E = (6.63 \times 10^{-34} \, \text{J} \cdot \text{s}) \times (2.9 \times 10^{-16} \, \text{Hz}) \][/tex]
4. Perform the multiplication:
[tex]\[ E = 1.9227 \times 10^{-49} \, \text{J} \][/tex]
5. Express the energy in the required format (nearest tenths place in the form of [tex]\(x \times 10^{-49} \, \text{J}\)[/tex]):
The calculated energy [tex]\(E = 1.9227 \times 10^{-49} \, \text{J}\)[/tex] can be rounded to the nearest tenths place.
6. Rounding the energy to the nearest tenths place:
[tex]\[ 1.9227 \approx 1.9 \][/tex]
So, the energy of the photon, to the nearest tenths place, is [tex]\(1.9 \times 10^{-49} \, \text{J}\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.