Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the zeros of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex], let's factorize the expression inside the parentheses:
First, simplify the function inside the parentheses:
[tex]\[ x^2 - 6x + 9 \][/tex]
Notice that [tex]\( x^2 - 6x + 9 \)[/tex] can be factored as a perfect square:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Thus, the original function can be rewritten as:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
To find the zeros of the function, set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 (x - 3)^2 = 0 \][/tex]
This equation will be zero if any of the individual factors are zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these, we get:
[tex]\[ x = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
[tex]\[ x = 0 \quad \text{or} \quad x = 3 \][/tex]
Therefore, the zeros of the function are:
[tex]\[ 0 \ \text{and} \ 3 \][/tex]
Next, count the number of distinct real zeros and complex zeros. Both 0 and 3 are real numbers and distinct from each other. There are no complex zeros.
So, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(\{2\}\)[/tex] distinct real zeros and [tex]\(\{0\}\)[/tex] complex zeros.
Therefore, the correct answer would be:
The graph of the function [tex]\(y = x^2(x^2 - 6x + 9)\)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(2\)[/tex] distinct real zeros and [tex]\(0\)[/tex] complex zeros.
First, simplify the function inside the parentheses:
[tex]\[ x^2 - 6x + 9 \][/tex]
Notice that [tex]\( x^2 - 6x + 9 \)[/tex] can be factored as a perfect square:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Thus, the original function can be rewritten as:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
To find the zeros of the function, set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 (x - 3)^2 = 0 \][/tex]
This equation will be zero if any of the individual factors are zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these, we get:
[tex]\[ x = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
[tex]\[ x = 0 \quad \text{or} \quad x = 3 \][/tex]
Therefore, the zeros of the function are:
[tex]\[ 0 \ \text{and} \ 3 \][/tex]
Next, count the number of distinct real zeros and complex zeros. Both 0 and 3 are real numbers and distinct from each other. There are no complex zeros.
So, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(\{2\}\)[/tex] distinct real zeros and [tex]\(\{0\}\)[/tex] complex zeros.
Therefore, the correct answer would be:
The graph of the function [tex]\(y = x^2(x^2 - 6x + 9)\)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(2\)[/tex] distinct real zeros and [tex]\(0\)[/tex] complex zeros.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.