At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the zeros of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex], let's factorize the expression inside the parentheses:
First, simplify the function inside the parentheses:
[tex]\[ x^2 - 6x + 9 \][/tex]
Notice that [tex]\( x^2 - 6x + 9 \)[/tex] can be factored as a perfect square:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Thus, the original function can be rewritten as:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
To find the zeros of the function, set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 (x - 3)^2 = 0 \][/tex]
This equation will be zero if any of the individual factors are zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these, we get:
[tex]\[ x = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
[tex]\[ x = 0 \quad \text{or} \quad x = 3 \][/tex]
Therefore, the zeros of the function are:
[tex]\[ 0 \ \text{and} \ 3 \][/tex]
Next, count the number of distinct real zeros and complex zeros. Both 0 and 3 are real numbers and distinct from each other. There are no complex zeros.
So, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(\{2\}\)[/tex] distinct real zeros and [tex]\(\{0\}\)[/tex] complex zeros.
Therefore, the correct answer would be:
The graph of the function [tex]\(y = x^2(x^2 - 6x + 9)\)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(2\)[/tex] distinct real zeros and [tex]\(0\)[/tex] complex zeros.
First, simplify the function inside the parentheses:
[tex]\[ x^2 - 6x + 9 \][/tex]
Notice that [tex]\( x^2 - 6x + 9 \)[/tex] can be factored as a perfect square:
[tex]\[ x^2 - 6x + 9 = (x - 3)^2 \][/tex]
Thus, the original function can be rewritten as:
[tex]\[ y = x^2 (x - 3)^2 \][/tex]
To find the zeros of the function, set [tex]\( y = 0 \)[/tex]:
[tex]\[ x^2 (x - 3)^2 = 0 \][/tex]
This equation will be zero if any of the individual factors are zero:
[tex]\[ x^2 = 0 \quad \text{or} \quad (x - 3)^2 = 0 \][/tex]
Solving these, we get:
[tex]\[ x = 0 \quad \text{or} \quad x - 3 = 0 \][/tex]
[tex]\[ x = 0 \quad \text{or} \quad x = 3 \][/tex]
Therefore, the zeros of the function are:
[tex]\[ 0 \ \text{and} \ 3 \][/tex]
Next, count the number of distinct real zeros and complex zeros. Both 0 and 3 are real numbers and distinct from each other. There are no complex zeros.
So, the graph of the function [tex]\( y = x^2 (x^2 - 6x + 9) \)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(\{2\}\)[/tex] distinct real zeros and [tex]\(\{0\}\)[/tex] complex zeros.
Therefore, the correct answer would be:
The graph of the function [tex]\(y = x^2(x^2 - 6x + 9)\)[/tex] has zeros of [tex]\(\{0, 3\}\)[/tex], so the function has [tex]\(2\)[/tex] distinct real zeros and [tex]\(0\)[/tex] complex zeros.
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.