Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the magnitude and direction of the electrical force, [tex]\( F_e \)[/tex], between two charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] using Coulomb's law, follow these steps:
1. Understand the Problem:
- [tex]\( q_1 = 5 \mu C \)[/tex] (microcoulombs) is a positive charge.
- [tex]\( q_2 = 2 \mu C \)[/tex] (microcoulombs) is also a positive charge.
- The distance between them is [tex]\( 3 \times 10^{-2} \)[/tex] meters (or 0.03 meters).
- We need to determine the magnitude and direction of the force between these charges.
2. Convert the Charges to Coulombs:
- The charge [tex]\( q_1 = 5 \mu C = 5 \times 10^{-6} \)[/tex] Coulombs.
- The charge [tex]\( q_2 = 2 \mu C = 2 \times 10^{-6} \)[/tex] Coulombs.
3. Use Coulomb's Law:
Coulomb's law states that the magnitude of the electrical force between two charges is given by:
[tex]\[ F_e = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex]).
- [tex]\( |q_1 \cdot q_2| \)[/tex] is the product of the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
4. Calculate the Force:
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{(5 \times 10^{-6})(2 \times 10^{-6})}{(0.03)^2} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{(0.03)^2} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{9 \times 10^{-4}} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{9 \times 10^{-4}} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times 1.111 \times 10^{-8} \][/tex]
[tex]\[ F_e \approx 99.89 \, \text{N} \][/tex]
5. Determine the Direction:
Since both [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive charges, they repel each other. Therefore, the force on [tex]\( q_2 \)[/tex] due to [tex]\( q_1 \)[/tex] will be directed away from [tex]\( q_1 \)[/tex]. Given that [tex]\( q_1 \)[/tex] is west of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed east.
Therefore, the magnitude of the electrical force is approximately [tex]\( 100 \, \text{N} \)[/tex] and the direction is east.
So, the correct choice is:
- Magnitude: [tex]\( 100 \, \text{N} \)[/tex]
- Direction: East
1. Understand the Problem:
- [tex]\( q_1 = 5 \mu C \)[/tex] (microcoulombs) is a positive charge.
- [tex]\( q_2 = 2 \mu C \)[/tex] (microcoulombs) is also a positive charge.
- The distance between them is [tex]\( 3 \times 10^{-2} \)[/tex] meters (or 0.03 meters).
- We need to determine the magnitude and direction of the force between these charges.
2. Convert the Charges to Coulombs:
- The charge [tex]\( q_1 = 5 \mu C = 5 \times 10^{-6} \)[/tex] Coulombs.
- The charge [tex]\( q_2 = 2 \mu C = 2 \times 10^{-6} \)[/tex] Coulombs.
3. Use Coulomb's Law:
Coulomb's law states that the magnitude of the electrical force between two charges is given by:
[tex]\[ F_e = k \frac{|q_1 \cdot q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant ([tex]\( k = 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2 \cdot \text{C}^{-2} \)[/tex]).
- [tex]\( |q_1 \cdot q_2| \)[/tex] is the product of the magnitudes of the charges.
- [tex]\( r \)[/tex] is the distance between the charges.
4. Calculate the Force:
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{(5 \times 10^{-6})(2 \times 10^{-6})}{(0.03)^2} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{(0.03)^2} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{9 \times 10^{-4}} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times \frac{10 \times 10^{-12}}{9 \times 10^{-4}} \][/tex]
[tex]\[ F_e = 8.99 \times 10^9 \times 1.111 \times 10^{-8} \][/tex]
[tex]\[ F_e \approx 99.89 \, \text{N} \][/tex]
5. Determine the Direction:
Since both [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive charges, they repel each other. Therefore, the force on [tex]\( q_2 \)[/tex] due to [tex]\( q_1 \)[/tex] will be directed away from [tex]\( q_1 \)[/tex]. Given that [tex]\( q_1 \)[/tex] is west of [tex]\( q_2 \)[/tex], the force on [tex]\( q_2 \)[/tex] will be directed east.
Therefore, the magnitude of the electrical force is approximately [tex]\( 100 \, \text{N} \)[/tex] and the direction is east.
So, the correct choice is:
- Magnitude: [tex]\( 100 \, \text{N} \)[/tex]
- Direction: East
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.