At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the equation [tex]\( t^3 = (t^2) \cdot t = -1 \)[/tex], we need to find a value of [tex]\( t \)[/tex] that satisfies this condition. Let's proceed with a step-by-step reasoning:
1. Starting with the equation:
[tex]\[ t^3 = (t^2) \cdot t = -1 \][/tex]
2. Understanding the equation:
- [tex]\( (t^2) \cdot t \)[/tex] means the square of [tex]\( t \)[/tex] multiplied by [tex]\( t \)[/tex] itself, which simplifies to [tex]\( t^3 \)[/tex].
- We need [tex]\( t^3 \)[/tex] to equal [tex]\(-1\)[/tex].
3. Exploring possible values for [tex]\( t \)[/tex]:
We seek a value of [tex]\( t \)[/tex] such that:
[tex]\[ t^3 = -1 \][/tex]
4. Trial and specific value: [tex]\( t = -1 \)[/tex]:
Let's check [tex]\( t = -1 \)[/tex]:
[tex]\[ t = -1 \][/tex]
5. Compute [tex]\( t^2 \)[/tex] when [tex]\( t = -1 \)[/tex]:
[tex]\[ t^2 = (-1)^2 = 1 \][/tex]
6. Compute [tex]\( t^3 \)[/tex] when [tex]\( t = -1 \)[/tex]:
[tex]\[ t^3 = (-1)^3 = -1 \][/tex]
7. Verification:
- Substituting [tex]\( t = -1 \)[/tex] back into the original equation:
[tex]\[ t^3 = (t^2) \cdot t \][/tex]
- Using the values we computed:
[tex]\[ -1 = 1 \cdot (-1) = -1 \][/tex]
- The values are consistent with the original condition.
Therefore, the value of [tex]\( t \)[/tex] that satisfies the equation [tex]\( t^3 = (t^2) \cdot t = -1 \)[/tex] is [tex]\( t = -1 \)[/tex].
Summary:
- [tex]\( t = -1 \)[/tex]
- [tex]\( t^2 = 1 \)[/tex]
- [tex]\( t^3 = -1 \)[/tex]
Thus, the solution to the problem is:
[tex]\[ (t, t^2, t^3) = (-1, 1, -1) \][/tex]
1. Starting with the equation:
[tex]\[ t^3 = (t^2) \cdot t = -1 \][/tex]
2. Understanding the equation:
- [tex]\( (t^2) \cdot t \)[/tex] means the square of [tex]\( t \)[/tex] multiplied by [tex]\( t \)[/tex] itself, which simplifies to [tex]\( t^3 \)[/tex].
- We need [tex]\( t^3 \)[/tex] to equal [tex]\(-1\)[/tex].
3. Exploring possible values for [tex]\( t \)[/tex]:
We seek a value of [tex]\( t \)[/tex] such that:
[tex]\[ t^3 = -1 \][/tex]
4. Trial and specific value: [tex]\( t = -1 \)[/tex]:
Let's check [tex]\( t = -1 \)[/tex]:
[tex]\[ t = -1 \][/tex]
5. Compute [tex]\( t^2 \)[/tex] when [tex]\( t = -1 \)[/tex]:
[tex]\[ t^2 = (-1)^2 = 1 \][/tex]
6. Compute [tex]\( t^3 \)[/tex] when [tex]\( t = -1 \)[/tex]:
[tex]\[ t^3 = (-1)^3 = -1 \][/tex]
7. Verification:
- Substituting [tex]\( t = -1 \)[/tex] back into the original equation:
[tex]\[ t^3 = (t^2) \cdot t \][/tex]
- Using the values we computed:
[tex]\[ -1 = 1 \cdot (-1) = -1 \][/tex]
- The values are consistent with the original condition.
Therefore, the value of [tex]\( t \)[/tex] that satisfies the equation [tex]\( t^3 = (t^2) \cdot t = -1 \)[/tex] is [tex]\( t = -1 \)[/tex].
Summary:
- [tex]\( t = -1 \)[/tex]
- [tex]\( t^2 = 1 \)[/tex]
- [tex]\( t^3 = -1 \)[/tex]
Thus, the solution to the problem is:
[tex]\[ (t, t^2, t^3) = (-1, 1, -1) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.