At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we will use Coulomb's law, which states that the magnitude of the electrical force between two point charges is given by the formula:
[tex]\[ F_e = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -6 \times 10^{-6} \, \text{C} \)[/tex] (negative charge),
- [tex]\( q_2 = 3 \times 10^{-6} \, \text{C} \)[/tex] (positive charge),
- [tex]\( r = 0.002 \, \text{m} \)[/tex].
First, let's substitute these values into Coulomb's law to find the magnitude of the electric force:
[tex]\[ F_e = k \frac{|q_1 q_2|}{r^2} \][/tex]
Substitute the constants and values of [tex]\( q_1 \)[/tex], [tex]\( q_2 \)[/tex], and [tex]\( r \)[/tex] into the formula:
[tex]\[ F_e = (8.99 \times 10^9) \frac{|(-6 \times 10^{-6}) (3 \times 10^{-6})|}{(0.002)^2} \][/tex]
Calculate the product of the charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ (-6 \times 10^{-6}) (3 \times 10^{-6}) = -18 \times 10^{-12} \][/tex]
Taking the absolute value, we get:
[tex]\[ |(-18 \times 10^{-12})| = 18 \times 10^{-12} \][/tex]
Now, calculate the square of the distance [tex]\( r^2 \)[/tex]:
[tex]\[ (0.002)^2 = 4 \times 10^{-6} \][/tex]
Now, substitute these values back into the formula:
[tex]\[ F_e = (8.99 \times 10^9) \frac{18 \times 10^{-12}}{4 \times 10^{-6}} \][/tex]
Next, simplify the fraction:
[tex]\[ \frac{18 \times 10^{-12}}{4 \times 10^{-6}} = 4.5 \times 10^{-6} \][/tex]
So, now calculate the force:
[tex]\[ F_e = (8.99 \times 10^9) (4.5 \times 10^{-6}) = 40455 \, \text{N} \][/tex]
Thus, the magnitude of the electrical force is:
[tex]\[ F_e = 40455 \, \text{N} \][/tex]
To determine the direction, we consider the signs of the charges:
- [tex]\( q_1 \)[/tex] is negative.
- [tex]\( q_2 \)[/tex] is positive.
Since opposite charges attract, the force direction will be towards [tex]\( q_1 \)[/tex]. Hence, the force on [tex]\( q_2 \)[/tex] is directed south (towards the location of [tex]\( q_1 \)[/tex]).
So, the correct answer is:
- Magnitude: [tex]\( 40455 \, \text{N} \)[/tex]
- Direction: South
So the answer is:
magnitude: [tex]\( 4 \times 10^4 \, N \)[/tex] direction: south
[tex]\[ F_e = k \frac{|q_1 q_2|}{r^2} \][/tex]
where:
- [tex]\( k \)[/tex] is Coulomb's constant, approximately [tex]\( 8.99 \times 10^9 \, \text{N} \cdot \text{m}^2/\text{C}^2 \)[/tex].
- [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are the magnitudes of the two charges.
- [tex]\( r \)[/tex] is the distance between the charges.
Given:
- [tex]\( q_1 = -6 \times 10^{-6} \, \text{C} \)[/tex] (negative charge),
- [tex]\( q_2 = 3 \times 10^{-6} \, \text{C} \)[/tex] (positive charge),
- [tex]\( r = 0.002 \, \text{m} \)[/tex].
First, let's substitute these values into Coulomb's law to find the magnitude of the electric force:
[tex]\[ F_e = k \frac{|q_1 q_2|}{r^2} \][/tex]
Substitute the constants and values of [tex]\( q_1 \)[/tex], [tex]\( q_2 \)[/tex], and [tex]\( r \)[/tex] into the formula:
[tex]\[ F_e = (8.99 \times 10^9) \frac{|(-6 \times 10^{-6}) (3 \times 10^{-6})|}{(0.002)^2} \][/tex]
Calculate the product of the charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]:
[tex]\[ (-6 \times 10^{-6}) (3 \times 10^{-6}) = -18 \times 10^{-12} \][/tex]
Taking the absolute value, we get:
[tex]\[ |(-18 \times 10^{-12})| = 18 \times 10^{-12} \][/tex]
Now, calculate the square of the distance [tex]\( r^2 \)[/tex]:
[tex]\[ (0.002)^2 = 4 \times 10^{-6} \][/tex]
Now, substitute these values back into the formula:
[tex]\[ F_e = (8.99 \times 10^9) \frac{18 \times 10^{-12}}{4 \times 10^{-6}} \][/tex]
Next, simplify the fraction:
[tex]\[ \frac{18 \times 10^{-12}}{4 \times 10^{-6}} = 4.5 \times 10^{-6} \][/tex]
So, now calculate the force:
[tex]\[ F_e = (8.99 \times 10^9) (4.5 \times 10^{-6}) = 40455 \, \text{N} \][/tex]
Thus, the magnitude of the electrical force is:
[tex]\[ F_e = 40455 \, \text{N} \][/tex]
To determine the direction, we consider the signs of the charges:
- [tex]\( q_1 \)[/tex] is negative.
- [tex]\( q_2 \)[/tex] is positive.
Since opposite charges attract, the force direction will be towards [tex]\( q_1 \)[/tex]. Hence, the force on [tex]\( q_2 \)[/tex] is directed south (towards the location of [tex]\( q_1 \)[/tex]).
So, the correct answer is:
- Magnitude: [tex]\( 40455 \, \text{N} \)[/tex]
- Direction: South
So the answer is:
magnitude: [tex]\( 4 \times 10^4 \, N \)[/tex] direction: south
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.