Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve these statements, let's look into the given information.
1. Finding the relative maximum:
A relative maximum of a function occurs at points where the first derivative changes from positive to negative. The first derivative indicates the rate of change of the function's value with respect to [tex]\( x \)[/tex].
From the given values:
[tex]\[ y = 216, 110, 40, 0, -16, -14, 0, 20, 40, 54, 56, 40, 0, -70, -176 \][/tex]
The calculated first derivatives are:
[tex]\[ [-106, -70, -40, -16, 2, 14, 20, 20, 14, 2, -16, -40, -70, -106] \][/tex]
Observing the change of signs in the first derivatives, it is positive before [tex]\( x = 3 \)[/tex] and negative after [tex]\( x = 3 \)[/tex].
Thus, the function has a relative maximum near [tex]\( x = 3 \)[/tex].
2. Behavior as [tex]\( x \)[/tex] approaches positive infinity:
A cubic function tends to [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex], depending on the leading coefficient of the cubic term. Given the values and the nature of the function, it suggests the polynomial has a positive leading coefficient.
Consequently, as [tex]\( x \)[/tex] approaches positive infinity, the value of the function approaches [tex]\(\infty\)[/tex].
Therefore, the completed statements are:
- The function has a relative maximum when [tex]\( x \)[/tex] is near [tex]\( \boxed{3} \)[/tex].
- As [tex]\( x \)[/tex] approaches positive infinity, the value of the function approaches [tex]\( \boxed{\infty} \)[/tex].
1. Finding the relative maximum:
A relative maximum of a function occurs at points where the first derivative changes from positive to negative. The first derivative indicates the rate of change of the function's value with respect to [tex]\( x \)[/tex].
From the given values:
[tex]\[ y = 216, 110, 40, 0, -16, -14, 0, 20, 40, 54, 56, 40, 0, -70, -176 \][/tex]
The calculated first derivatives are:
[tex]\[ [-106, -70, -40, -16, 2, 14, 20, 20, 14, 2, -16, -40, -70, -106] \][/tex]
Observing the change of signs in the first derivatives, it is positive before [tex]\( x = 3 \)[/tex] and negative after [tex]\( x = 3 \)[/tex].
Thus, the function has a relative maximum near [tex]\( x = 3 \)[/tex].
2. Behavior as [tex]\( x \)[/tex] approaches positive infinity:
A cubic function tends to [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex] as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex], depending on the leading coefficient of the cubic term. Given the values and the nature of the function, it suggests the polynomial has a positive leading coefficient.
Consequently, as [tex]\( x \)[/tex] approaches positive infinity, the value of the function approaches [tex]\(\infty\)[/tex].
Therefore, the completed statements are:
- The function has a relative maximum when [tex]\( x \)[/tex] is near [tex]\( \boxed{3} \)[/tex].
- As [tex]\( x \)[/tex] approaches positive infinity, the value of the function approaches [tex]\( \boxed{\infty} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.