Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, we'll use the formula for calculating the intensity of sound in decibels:
[tex]\[ I(dB) = 10 \log_{10}\left(\frac{I}{I_0}\right) \][/tex]
Given:
- [tex]\( I = 10^2 \cdot I_0 \)[/tex]
- [tex]\( I_0 \)[/tex] is the threshold of hearing intensity.
Step-by-step, we can substitute the given values into the formula:
1. Substitute [tex]\( I \)[/tex] with [tex]\( 10^2 \cdot I_0 \)[/tex]:
[tex]\[ I(dB) = 10 \log_{10}\left(\frac{10^2 \cdot I_0}{I_0}\right) \][/tex]
2. Simplify the fraction inside the logarithm:
[tex]\[ I(dB) = 10 \log_{10}(10^2) \][/tex]
3. Recognize that the [tex]\( I_0 \)[/tex] terms cancel each other out:
[tex]\[ I(dB) = 10 \log_{10}(10^2) \][/tex]
4. Apply the properties of logarithms. The logarithm of a power can be written as the exponent times the logarithm of the base:
[tex]\[ \log_{10}(10^2) = 2 \][/tex]
5. Multiply the result by 10:
[tex]\[ I(dB) = 10 \cdot 2 \][/tex]
6. Simplify the multiplication:
[tex]\[ I(dB) = 20 \][/tex]
Therefore, the intensity in decibels is [tex]\( 20 \, dB \)[/tex].
[tex]\[ I(dB) = 10 \log_{10}\left(\frac{I}{I_0}\right) \][/tex]
Given:
- [tex]\( I = 10^2 \cdot I_0 \)[/tex]
- [tex]\( I_0 \)[/tex] is the threshold of hearing intensity.
Step-by-step, we can substitute the given values into the formula:
1. Substitute [tex]\( I \)[/tex] with [tex]\( 10^2 \cdot I_0 \)[/tex]:
[tex]\[ I(dB) = 10 \log_{10}\left(\frac{10^2 \cdot I_0}{I_0}\right) \][/tex]
2. Simplify the fraction inside the logarithm:
[tex]\[ I(dB) = 10 \log_{10}(10^2) \][/tex]
3. Recognize that the [tex]\( I_0 \)[/tex] terms cancel each other out:
[tex]\[ I(dB) = 10 \log_{10}(10^2) \][/tex]
4. Apply the properties of logarithms. The logarithm of a power can be written as the exponent times the logarithm of the base:
[tex]\[ \log_{10}(10^2) = 2 \][/tex]
5. Multiply the result by 10:
[tex]\[ I(dB) = 10 \cdot 2 \][/tex]
6. Simplify the multiplication:
[tex]\[ I(dB) = 20 \][/tex]
Therefore, the intensity in decibels is [tex]\( 20 \, dB \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.