Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve this problem step-by-step.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.