Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's solve this problem step-by-step.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.