At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this problem step-by-step.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
1. Initial Conditions and Given Values:
- Initial position: [tex]\((x_0, y_0) = (0, 0)\)[/tex]
- Initial velocity: [tex]\(\vec{v_0} = 5 \hat{i} \, \text{m/s} + 0 \hat{j} \, \text{m/s}\)[/tex]
- Acceleration: [tex]\(\vec{a} = 3 \hat{i} \, \text{m/s}^2 + 2 \hat{j} \, \text{m/s}^2\)[/tex]
- We need to find the [tex]\(y\)[/tex]-coordinate when the [tex]\(x\)[/tex]-coordinate is [tex]\(84 \, \text{m}\)[/tex].
2. Equation of Motion in the [tex]\(x\)[/tex]-direction:
The equation for the [tex]\(x\)[/tex]-coordinate is given by:
[tex]\[ x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2 \][/tex]
Substituting the given values:
[tex]\[ 84 = 0 + 5t + \frac{1}{2} \cdot 3 t^2 \][/tex]
Simplifying, this becomes:
[tex]\[ 84 = 5t + 1.5t^2 \][/tex]
Rearrange the quadratic equation to standard form:
[tex]\[ 1.5t^2 + 5t - 84 = 0 \][/tex]
3. Solve the Quadratic Equation for [tex]\(t\)[/tex]:
The quadratic equation [tex]\(1.5 t^2 + 5 t - 84 = 0\)[/tex] can be solved using the quadratic formula [tex]\( t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\(a = 1.5\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -84\)[/tex].
Plugging in these values:
[tex]\[ t = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 1.5 \cdot (-84)}}{2 \cdot 1.5} \][/tex]
Simplifying inside the square root:
[tex]\[ t = \frac{-5 \pm \sqrt{25 + 504}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm \sqrt{529}}{3} \][/tex]
[tex]\[ t = \frac{-5 \pm 23}{3} \][/tex]
This yields two solutions:
[tex]\[ t_1 = \frac{18}{3} = 6 \, \text{seconds} \][/tex]
[tex]\[ t_2 = \frac{-28}{3} \approx -9.33\, \text{seconds (not physically meaningful)} \][/tex]
We use the positive solution:
[tex]\[ t = 6 \,\text{seconds} \][/tex]
4. Equation of Motion in the [tex]\(y\)[/tex]-direction:
Now that we have the time [tex]\(t = 6 \, \text{seconds}\)[/tex], we use the equation for the [tex]\(y\)[/tex]-coordinate:
[tex]\[ y = y_0 + v_{0y} t + \frac{1}{2} a_y t^2 \][/tex]
Given [tex]\(y_0 = 0\)[/tex], [tex]\(v_{0y} = 0\)[/tex], and [tex]\(a_y = 2 \, \text{m/s}^2\)[/tex], we substitute these values into the equation:
[tex]\[ y = 0 + 0 + \frac{1}{2} \cdot 2 \cdot (6)^2 \][/tex]
Simplifying:
[tex]\[ y = \frac{1}{2} \cdot 2 \cdot 36 \][/tex]
[tex]\[ y = 36 \, \text{meters} \][/tex]
Therefore, the [tex]\(y\)[/tex]-coordinate of the particle at the instant when its [tex]\(x\)[/tex]-coordinate is [tex]\(84\)[/tex] meters is [tex]\(36\)[/tex] meters, not [tex]\(48\)[/tex] meters.
The correct [tex]\(y\)[/tex]-coordinate is 36 meters.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.