Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To write the point-slope form of the equation of a line that passes through the points [tex]\((-4, 7)\)[/tex] and [tex]\( (5, -3)\)[/tex], we need to follow these steps:
1. Find the slope (m) of the line: The slope [tex]\(m\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, the points are [tex]\((x_1, y_1) = (-4, 7)\)[/tex] and [tex]\((x_2, y_2) = (5, -3)\)[/tex].
Plugging in the values, we get:
[tex]\[ m = \frac{-3 - 7}{5 + 4} = \frac{-10}{9} \][/tex]
2. Determine the point-slope form: The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
3. Substitute one of the points and the slope into the point-slope form:
We use the point [tex]\((-4, 7)\)[/tex] and the slope [tex]\(m = -\frac{10}{9}\)[/tex].
Substituting these values into the point-slope form, we have:
[tex]\[ y - 7 = -\frac{10}{9}(x - (-4)) \][/tex]
4. Simplify the equation:
Since [tex]\(x - (-4)\)[/tex] simplifies to [tex]\(x + 4\)[/tex], the equation becomes:
[tex]\[ y - 7 = -\frac{10}{9}(x + 4) \][/tex]
So, the point-slope form of the equation for the line passing through the points [tex]\((-4, 7)\)[/tex] and [tex]\((5, -3)\)[/tex] is:
[tex]\[ y - 7 = -\frac{10}{9}(x + 4) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
1. Find the slope (m) of the line: The slope [tex]\(m\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Here, the points are [tex]\((x_1, y_1) = (-4, 7)\)[/tex] and [tex]\((x_2, y_2) = (5, -3)\)[/tex].
Plugging in the values, we get:
[tex]\[ m = \frac{-3 - 7}{5 + 4} = \frac{-10}{9} \][/tex]
2. Determine the point-slope form: The point-slope form of the equation of a line is given by:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
3. Substitute one of the points and the slope into the point-slope form:
We use the point [tex]\((-4, 7)\)[/tex] and the slope [tex]\(m = -\frac{10}{9}\)[/tex].
Substituting these values into the point-slope form, we have:
[tex]\[ y - 7 = -\frac{10}{9}(x - (-4)) \][/tex]
4. Simplify the equation:
Since [tex]\(x - (-4)\)[/tex] simplifies to [tex]\(x + 4\)[/tex], the equation becomes:
[tex]\[ y - 7 = -\frac{10}{9}(x + 4) \][/tex]
So, the point-slope form of the equation for the line passing through the points [tex]\((-4, 7)\)[/tex] and [tex]\((5, -3)\)[/tex] is:
[tex]\[ y - 7 = -\frac{10}{9}(x + 4) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.