Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the reaction quotient, [tex]\( Q \)[/tex], for the given reaction:
[tex]\[ \text{H}_2(g) + \text{I}_2(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
you need to use the formula for the reaction quotient. For the reaction [tex]\( \text{H}_2 + \text{I}_2 \leftrightarrow 2 \text{HI} \)[/tex], the expression for [tex]\( Q \)[/tex] is:
[tex]\[ Q = \frac{[\text{HI}]^2}{[\text{H}_2] \cdot [\text{I}_2]} \][/tex]
Given the concentrations:
[tex]\[ [\text{H}_2] = 0.100 \, M \][/tex]
[tex]\[ [\text{I}_2] = 0.200 \, M \][/tex]
[tex]\[ [\text{HI}] = 3.50 \, M \][/tex]
Let's substitute these values into the formula.
1. Calculate the numerator of the reaction quotient:
[tex]\[ [\text{HI}]^2 = (3.50 \, M)^2 \][/tex]
[tex]\[ [\text{HI}]^2 = 12.25 \, M^2 \][/tex]
2. Calculate the denominator of the reaction quotient:
[tex]\[ [\text{H}_2] \cdot [\text{I}_2] = 0.100 \, M \cdot 0.200 \, M \][/tex]
[tex]\[ [\text{H}_2] \cdot [\text{I}_2] = 0.0200 \, M^2 \][/tex]
3. Now, divide the numerator by the denominator to find [tex]\( Q \)[/tex]:
[tex]\[ Q = \frac{[\text{HI}]^2}{[\text{H}_2] \cdot [\text{I}_2]} = \frac{12.25 \, M^2}{0.0200 \, M^2} \][/tex]
[tex]\[ Q = 612.5 \][/tex]
Therefore, the reaction quotient [tex]\( Q \)[/tex] for this system is closest to:
[tex]\[ \boxed{613} \][/tex]
So the correct answer is 613.
[tex]\[ \text{H}_2(g) + \text{I}_2(g) \leftrightarrow 2 \text{HI}(g) \][/tex]
you need to use the formula for the reaction quotient. For the reaction [tex]\( \text{H}_2 + \text{I}_2 \leftrightarrow 2 \text{HI} \)[/tex], the expression for [tex]\( Q \)[/tex] is:
[tex]\[ Q = \frac{[\text{HI}]^2}{[\text{H}_2] \cdot [\text{I}_2]} \][/tex]
Given the concentrations:
[tex]\[ [\text{H}_2] = 0.100 \, M \][/tex]
[tex]\[ [\text{I}_2] = 0.200 \, M \][/tex]
[tex]\[ [\text{HI}] = 3.50 \, M \][/tex]
Let's substitute these values into the formula.
1. Calculate the numerator of the reaction quotient:
[tex]\[ [\text{HI}]^2 = (3.50 \, M)^2 \][/tex]
[tex]\[ [\text{HI}]^2 = 12.25 \, M^2 \][/tex]
2. Calculate the denominator of the reaction quotient:
[tex]\[ [\text{H}_2] \cdot [\text{I}_2] = 0.100 \, M \cdot 0.200 \, M \][/tex]
[tex]\[ [\text{H}_2] \cdot [\text{I}_2] = 0.0200 \, M^2 \][/tex]
3. Now, divide the numerator by the denominator to find [tex]\( Q \)[/tex]:
[tex]\[ Q = \frac{[\text{HI}]^2}{[\text{H}_2] \cdot [\text{I}_2]} = \frac{12.25 \, M^2}{0.0200 \, M^2} \][/tex]
[tex]\[ Q = 612.5 \][/tex]
Therefore, the reaction quotient [tex]\( Q \)[/tex] for this system is closest to:
[tex]\[ \boxed{613} \][/tex]
So the correct answer is 613.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.