Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the specific heat capacity of the unknown substance, we can use the formula:
[tex]\[ q = m C_p \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added, in joules (J)
- [tex]\( m \)[/tex] is the mass of the substance, in kilograms (kg)
- [tex]\( C_p \)[/tex] is the specific heat capacity, in J/(kg·°C)
- [tex]\( \Delta T \)[/tex] is the change in temperature, in degrees Celsius (°C)
Here are the given values:
- [tex]\( q = 3000.0 \, \text{J} \)[/tex]
- [tex]\( m = 0.465 \, \text{kg} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 50.0 \, ^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 100.0 \, ^{\circ} \text{C} \)[/tex]
1. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 100.0 \, ^{\circ} \text{C} - 50.0 \, ^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 50.0 \, ^{\circ} \text{C} \][/tex]
2. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
3. Plug in the values and solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C}} \][/tex]
4. Perform the multiplication in the denominator:
[tex]\[ 0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C} = 23.25 \, \text{kg} \cdot ^{\circ} \text{C} \][/tex]
5. Now, compute [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{23.25 \, \text{kg} \cdot ^{\circ} \text{C}} \][/tex]
[tex]\[ C_p \approx 129.032 \, \text{J/(kg·°C)} \][/tex]
6. Convert the specific heat capacity to J/(g·°C):
Since [tex]\( 1 \, \text{kg} = 1000 \, \text{g} \)[/tex], divide by 1000:
[tex]\[ C_p = \frac{129.032 \, \text{J/(kg·°C)}}{1000} \][/tex]
[tex]\[ C_p \approx 0.129 \, \text{J/(g·°C)} \][/tex]
Now, we compare this result to the given choices:
[tex]\[ 0.00775 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.0600 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.129 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.155 \, \text{J/(g·°C)} \][/tex]
The specific heat capacity of the substance is approximately [tex]\( \boxed{0.129 \, \text{J/(g·°C)} } \)[/tex].
[tex]\[ q = m C_p \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added, in joules (J)
- [tex]\( m \)[/tex] is the mass of the substance, in kilograms (kg)
- [tex]\( C_p \)[/tex] is the specific heat capacity, in J/(kg·°C)
- [tex]\( \Delta T \)[/tex] is the change in temperature, in degrees Celsius (°C)
Here are the given values:
- [tex]\( q = 3000.0 \, \text{J} \)[/tex]
- [tex]\( m = 0.465 \, \text{kg} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 50.0 \, ^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 100.0 \, ^{\circ} \text{C} \)[/tex]
1. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 100.0 \, ^{\circ} \text{C} - 50.0 \, ^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 50.0 \, ^{\circ} \text{C} \][/tex]
2. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
3. Plug in the values and solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C}} \][/tex]
4. Perform the multiplication in the denominator:
[tex]\[ 0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C} = 23.25 \, \text{kg} \cdot ^{\circ} \text{C} \][/tex]
5. Now, compute [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{23.25 \, \text{kg} \cdot ^{\circ} \text{C}} \][/tex]
[tex]\[ C_p \approx 129.032 \, \text{J/(kg·°C)} \][/tex]
6. Convert the specific heat capacity to J/(g·°C):
Since [tex]\( 1 \, \text{kg} = 1000 \, \text{g} \)[/tex], divide by 1000:
[tex]\[ C_p = \frac{129.032 \, \text{J/(kg·°C)}}{1000} \][/tex]
[tex]\[ C_p \approx 0.129 \, \text{J/(g·°C)} \][/tex]
Now, we compare this result to the given choices:
[tex]\[ 0.00775 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.0600 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.129 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.155 \, \text{J/(g·°C)} \][/tex]
The specific heat capacity of the substance is approximately [tex]\( \boxed{0.129 \, \text{J/(g·°C)} } \)[/tex].
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.