Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore thousands of questions and answers from knowledgeable experts in various fields on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

A sample of an unknown substance has a mass of 0.465 kg. If 3,000.0 J of heat is required to heat the substance from 50.0°C to 100.0°C, what is the specific heat of the substance?

Use the formula: [tex]\( q = m C_p \Delta T \)[/tex]

A. 0.00775 J/(g·°C)
B. 0.0600 J/(g·°C)
C. 0.129 J/(g·°C)
D. 0.155 J/(g·°C)

Sagot :

To determine the specific heat capacity of the unknown substance, we can use the formula:

[tex]\[ q = m C_p \Delta T \][/tex]

where:
- [tex]\( q \)[/tex] is the heat added, in joules (J)
- [tex]\( m \)[/tex] is the mass of the substance, in kilograms (kg)
- [tex]\( C_p \)[/tex] is the specific heat capacity, in J/(kg·°C)
- [tex]\( \Delta T \)[/tex] is the change in temperature, in degrees Celsius (°C)

Here are the given values:
- [tex]\( q = 3000.0 \, \text{J} \)[/tex]
- [tex]\( m = 0.465 \, \text{kg} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 50.0 \, ^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 100.0 \, ^{\circ} \text{C} \)[/tex]

1. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 100.0 \, ^{\circ} \text{C} - 50.0 \, ^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 50.0 \, ^{\circ} \text{C} \][/tex]

2. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]

3. Plug in the values and solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C}} \][/tex]

4. Perform the multiplication in the denominator:
[tex]\[ 0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C} = 23.25 \, \text{kg} \cdot ^{\circ} \text{C} \][/tex]

5. Now, compute [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{23.25 \, \text{kg} \cdot ^{\circ} \text{C}} \][/tex]
[tex]\[ C_p \approx 129.032 \, \text{J/(kg·°C)} \][/tex]

6. Convert the specific heat capacity to J/(g·°C):
Since [tex]\( 1 \, \text{kg} = 1000 \, \text{g} \)[/tex], divide by 1000:
[tex]\[ C_p = \frac{129.032 \, \text{J/(kg·°C)}}{1000} \][/tex]
[tex]\[ C_p \approx 0.129 \, \text{J/(g·°C)} \][/tex]

Now, we compare this result to the given choices:

[tex]\[ 0.00775 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.0600 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.129 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.155 \, \text{J/(g·°C)} \][/tex]

The specific heat capacity of the substance is approximately [tex]\( \boxed{0.129 \, \text{J/(g·°C)} } \)[/tex].