Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the specific heat capacity of the unknown substance, we can use the formula:
[tex]\[ q = m C_p \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added, in joules (J)
- [tex]\( m \)[/tex] is the mass of the substance, in kilograms (kg)
- [tex]\( C_p \)[/tex] is the specific heat capacity, in J/(kg·°C)
- [tex]\( \Delta T \)[/tex] is the change in temperature, in degrees Celsius (°C)
Here are the given values:
- [tex]\( q = 3000.0 \, \text{J} \)[/tex]
- [tex]\( m = 0.465 \, \text{kg} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 50.0 \, ^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 100.0 \, ^{\circ} \text{C} \)[/tex]
1. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 100.0 \, ^{\circ} \text{C} - 50.0 \, ^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 50.0 \, ^{\circ} \text{C} \][/tex]
2. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
3. Plug in the values and solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C}} \][/tex]
4. Perform the multiplication in the denominator:
[tex]\[ 0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C} = 23.25 \, \text{kg} \cdot ^{\circ} \text{C} \][/tex]
5. Now, compute [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{23.25 \, \text{kg} \cdot ^{\circ} \text{C}} \][/tex]
[tex]\[ C_p \approx 129.032 \, \text{J/(kg·°C)} \][/tex]
6. Convert the specific heat capacity to J/(g·°C):
Since [tex]\( 1 \, \text{kg} = 1000 \, \text{g} \)[/tex], divide by 1000:
[tex]\[ C_p = \frac{129.032 \, \text{J/(kg·°C)}}{1000} \][/tex]
[tex]\[ C_p \approx 0.129 \, \text{J/(g·°C)} \][/tex]
Now, we compare this result to the given choices:
[tex]\[ 0.00775 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.0600 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.129 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.155 \, \text{J/(g·°C)} \][/tex]
The specific heat capacity of the substance is approximately [tex]\( \boxed{0.129 \, \text{J/(g·°C)} } \)[/tex].
[tex]\[ q = m C_p \Delta T \][/tex]
where:
- [tex]\( q \)[/tex] is the heat added, in joules (J)
- [tex]\( m \)[/tex] is the mass of the substance, in kilograms (kg)
- [tex]\( C_p \)[/tex] is the specific heat capacity, in J/(kg·°C)
- [tex]\( \Delta T \)[/tex] is the change in temperature, in degrees Celsius (°C)
Here are the given values:
- [tex]\( q = 3000.0 \, \text{J} \)[/tex]
- [tex]\( m = 0.465 \, \text{kg} \)[/tex]
- Initial temperature, [tex]\( T_{\text{initial}} = 50.0 \, ^{\circ} \text{C} \)[/tex]
- Final temperature, [tex]\( T_{\text{final}} = 100.0 \, ^{\circ} \text{C} \)[/tex]
1. Calculate the temperature change ([tex]\( \Delta T \)[/tex]):
[tex]\[ \Delta T = T_{\text{final}} - T_{\text{initial}} \][/tex]
[tex]\[ \Delta T = 100.0 \, ^{\circ} \text{C} - 50.0 \, ^{\circ} \text{C} \][/tex]
[tex]\[ \Delta T = 50.0 \, ^{\circ} \text{C} \][/tex]
2. Rearrange the formula to solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{q}{m \Delta T} \][/tex]
3. Plug in the values and solve for [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C}} \][/tex]
4. Perform the multiplication in the denominator:
[tex]\[ 0.465 \, \text{kg} \times 50.0 \, ^{\circ} \text{C} = 23.25 \, \text{kg} \cdot ^{\circ} \text{C} \][/tex]
5. Now, compute [tex]\( C_p \)[/tex]:
[tex]\[ C_p = \frac{3000.0 \, \text{J}}{23.25 \, \text{kg} \cdot ^{\circ} \text{C}} \][/tex]
[tex]\[ C_p \approx 129.032 \, \text{J/(kg·°C)} \][/tex]
6. Convert the specific heat capacity to J/(g·°C):
Since [tex]\( 1 \, \text{kg} = 1000 \, \text{g} \)[/tex], divide by 1000:
[tex]\[ C_p = \frac{129.032 \, \text{J/(kg·°C)}}{1000} \][/tex]
[tex]\[ C_p \approx 0.129 \, \text{J/(g·°C)} \][/tex]
Now, we compare this result to the given choices:
[tex]\[ 0.00775 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.0600 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.129 \, \text{J/(g·°C)} \][/tex]
[tex]\[ 0.155 \, \text{J/(g·°C)} \][/tex]
The specific heat capacity of the substance is approximately [tex]\( \boxed{0.129 \, \text{J/(g·°C)} } \)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.