Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's solve each of the given trigonometric equations step-by-step, approximating to the nearest 0.01 radian.
### (a) [tex]$\sin \theta = -0.0149$[/tex]
To find [tex]$\theta$[/tex] satisfying this equation, we look for [tex]$\theta$[/tex] such that the sine of [tex]$\theta$[/tex] equals [tex]$-0.0149$[/tex]. The principal solution for [tex]$\theta$[/tex] can be found using the arcsine function:
[tex]\[ \theta = \arcsin(-0.0149) \approx -0.01 \text{ radians} \][/tex]
Since sine is also negative in the fourth quadrant, we add [tex]$2\pi$[/tex] to bring it into the interval [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = 2\pi + \arcsin(-0.0149) \approx 6.27 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = -0.01, 6.27 \][/tex]
### (b) [tex]$\cos \theta = 0.9256$[/tex]
To find [tex]$\theta$[/tex] such that the cosine of [tex]$\theta$[/tex] equals [tex]$0.9256$[/tex], we use the arccosine function:
[tex]\[ \theta = \arccos(0.9256) \approx 0.39 \text{ radians} \][/tex]
Since cosine is positive in the fourth quadrant, we use the property of the cosine function:
[tex]\[ \theta = 2\pi - \arccos(0.9256) \approx 5.89 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.39, 5.89 \][/tex]
### (c) [tex]$\tan \theta = 0.44$[/tex]
To find [tex]$\theta$[/tex] such that the tangent of [tex]$\theta$[/tex] equals [tex]$0.44$[/tex], we use the arctangent function:
[tex]\[ \theta = \arctan(0.44) \approx 0.41 \text{ radians} \][/tex]
Since tangent has a period of [tex]$\pi$[/tex], the other solution within [tex]$[0, 2\pi)$[/tex] is:
[tex]\[ \theta = \pi + \arctan(0.44) \approx 3.55 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.41, 3.55 \][/tex]
### (d) [tex]$\cot \theta = -2.771$[/tex]
Since cotangent is the reciprocal of tangent, we first consider [tex]$\theta$[/tex] such that:
[tex]\[ \cot \theta = -2.771 \implies \tan \theta = \frac{1}{-2.771} \approx -0.36 \][/tex]
Using the arctangent function to find the principal angle:
[tex]\[ \theta = \arctan(-0.36) \approx -0.34 \text{ radians} \][/tex]
Because cotangent has a period of [tex]$\pi$[/tex], the possible solutions are adjusted to fit within [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = \arctan(-0.36) + \pi \approx 2.80 \text{ radians} \][/tex]
To get the second solution:
[tex]\[ \theta = \arctan(-0.36) + \pi - \pi = -0.34 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 2.80, -0.34 \][/tex]
### (e) [tex]$\sec \theta = -3.58$[/tex]
Since secant is the reciprocal of cosine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \sec \theta = -3.58 \implies \cos \theta = \frac{1}{-3.58} \approx -0.28 \][/tex]
Using the arccosine function:
[tex]\[ \theta = \arccos(-0.28) \approx 5.00 \text{ radians} \][/tex]
Since cosine is negative in the second quadrant:
[tex]\[ \theta = \pi - \arccos(-0.28) \approx 1.86 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 5.00, 1.86 \][/tex]
### (f) [tex]$\csc \theta = 1.212$[/tex]
Since cosecant is the reciprocal of sine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \csc \theta = 1.212 \implies \sin \theta = \frac{1}{1.212} \approx 0.825 \][/tex]
Using the arcsine function:
[tex]\[ \theta = \arcsin(0.825) \approx 0.97 \text{ radians} \][/tex]
Since sine is positive in the first and second quadrants:
[tex]\[ \theta = 2\pi - \arcsin(0.825) \approx 5.31 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.97, 5.31 \][/tex]
Concluding, the solutions are:
- (a) [tex]$\sin \theta = -0.0149$[/tex]: [tex]$\theta = -0.01, 6.27$[/tex]
- (b) [tex]$\cos \theta = 0.9256$[/tex]: [tex]$\theta = 0.39, 5.89$[/tex]
- (c) [tex]$\tan \theta = 0.44$[/tex]: [tex]$\theta = 0.41, 3.55$[/tex]
- (d) [tex]$\cot \theta = -2.771$[/tex]: [tex]$\theta = 2.80, -0.34$[/tex]
- (e) [tex]$\sec \theta = -3.58$[/tex]: [tex]$\theta = 5.00, 1.86$[/tex]
- (f) [tex]$\csc \theta = 1.212$[/tex]: [tex]$\theta = 0.97, 5.31$[/tex]
### (a) [tex]$\sin \theta = -0.0149$[/tex]
To find [tex]$\theta$[/tex] satisfying this equation, we look for [tex]$\theta$[/tex] such that the sine of [tex]$\theta$[/tex] equals [tex]$-0.0149$[/tex]. The principal solution for [tex]$\theta$[/tex] can be found using the arcsine function:
[tex]\[ \theta = \arcsin(-0.0149) \approx -0.01 \text{ radians} \][/tex]
Since sine is also negative in the fourth quadrant, we add [tex]$2\pi$[/tex] to bring it into the interval [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = 2\pi + \arcsin(-0.0149) \approx 6.27 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = -0.01, 6.27 \][/tex]
### (b) [tex]$\cos \theta = 0.9256$[/tex]
To find [tex]$\theta$[/tex] such that the cosine of [tex]$\theta$[/tex] equals [tex]$0.9256$[/tex], we use the arccosine function:
[tex]\[ \theta = \arccos(0.9256) \approx 0.39 \text{ radians} \][/tex]
Since cosine is positive in the fourth quadrant, we use the property of the cosine function:
[tex]\[ \theta = 2\pi - \arccos(0.9256) \approx 5.89 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.39, 5.89 \][/tex]
### (c) [tex]$\tan \theta = 0.44$[/tex]
To find [tex]$\theta$[/tex] such that the tangent of [tex]$\theta$[/tex] equals [tex]$0.44$[/tex], we use the arctangent function:
[tex]\[ \theta = \arctan(0.44) \approx 0.41 \text{ radians} \][/tex]
Since tangent has a period of [tex]$\pi$[/tex], the other solution within [tex]$[0, 2\pi)$[/tex] is:
[tex]\[ \theta = \pi + \arctan(0.44) \approx 3.55 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.41, 3.55 \][/tex]
### (d) [tex]$\cot \theta = -2.771$[/tex]
Since cotangent is the reciprocal of tangent, we first consider [tex]$\theta$[/tex] such that:
[tex]\[ \cot \theta = -2.771 \implies \tan \theta = \frac{1}{-2.771} \approx -0.36 \][/tex]
Using the arctangent function to find the principal angle:
[tex]\[ \theta = \arctan(-0.36) \approx -0.34 \text{ radians} \][/tex]
Because cotangent has a period of [tex]$\pi$[/tex], the possible solutions are adjusted to fit within [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = \arctan(-0.36) + \pi \approx 2.80 \text{ radians} \][/tex]
To get the second solution:
[tex]\[ \theta = \arctan(-0.36) + \pi - \pi = -0.34 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 2.80, -0.34 \][/tex]
### (e) [tex]$\sec \theta = -3.58$[/tex]
Since secant is the reciprocal of cosine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \sec \theta = -3.58 \implies \cos \theta = \frac{1}{-3.58} \approx -0.28 \][/tex]
Using the arccosine function:
[tex]\[ \theta = \arccos(-0.28) \approx 5.00 \text{ radians} \][/tex]
Since cosine is negative in the second quadrant:
[tex]\[ \theta = \pi - \arccos(-0.28) \approx 1.86 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 5.00, 1.86 \][/tex]
### (f) [tex]$\csc \theta = 1.212$[/tex]
Since cosecant is the reciprocal of sine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \csc \theta = 1.212 \implies \sin \theta = \frac{1}{1.212} \approx 0.825 \][/tex]
Using the arcsine function:
[tex]\[ \theta = \arcsin(0.825) \approx 0.97 \text{ radians} \][/tex]
Since sine is positive in the first and second quadrants:
[tex]\[ \theta = 2\pi - \arcsin(0.825) \approx 5.31 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.97, 5.31 \][/tex]
Concluding, the solutions are:
- (a) [tex]$\sin \theta = -0.0149$[/tex]: [tex]$\theta = -0.01, 6.27$[/tex]
- (b) [tex]$\cos \theta = 0.9256$[/tex]: [tex]$\theta = 0.39, 5.89$[/tex]
- (c) [tex]$\tan \theta = 0.44$[/tex]: [tex]$\theta = 0.41, 3.55$[/tex]
- (d) [tex]$\cot \theta = -2.771$[/tex]: [tex]$\theta = 2.80, -0.34$[/tex]
- (e) [tex]$\sec \theta = -3.58$[/tex]: [tex]$\theta = 5.00, 1.86$[/tex]
- (f) [tex]$\csc \theta = 1.212$[/tex]: [tex]$\theta = 0.97, 5.31$[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.