At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Approximate, to the nearest 0.01 radian, all angles [tex]\(\theta\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] that satisfy the equation. (Enter your answers as a comma-separated list.)

(a) [tex]\(\sin \theta = -0.0149\)[/tex]
[tex]\(\theta =\)[/tex]

(b) [tex]\(\cos \theta = 0.9256\)[/tex]
[tex]\(\theta =\)[/tex]

(c) [tex]\(\tan \theta = 0.44\)[/tex]
[tex]\(\theta =\)[/tex]

(d) [tex]\(\cot \theta = -2.771\)[/tex]
[tex]\(\theta =\)[/tex]

(e) [tex]\(\sec \theta = -3.58\)[/tex]
[tex]\(\theta =\)[/tex]

(f) [tex]\(\csc \theta = 1.212\)[/tex]
[tex]\(\theta =\)[/tex]


Sagot :

Sure, let's solve each of the given trigonometric equations step-by-step, approximating to the nearest 0.01 radian.

### (a) [tex]$\sin \theta = -0.0149$[/tex]

To find [tex]$\theta$[/tex] satisfying this equation, we look for [tex]$\theta$[/tex] such that the sine of [tex]$\theta$[/tex] equals [tex]$-0.0149$[/tex]. The principal solution for [tex]$\theta$[/tex] can be found using the arcsine function:
[tex]\[ \theta = \arcsin(-0.0149) \approx -0.01 \text{ radians} \][/tex]

Since sine is also negative in the fourth quadrant, we add [tex]$2\pi$[/tex] to bring it into the interval [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = 2\pi + \arcsin(-0.0149) \approx 6.27 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = -0.01, 6.27 \][/tex]

### (b) [tex]$\cos \theta = 0.9256$[/tex]

To find [tex]$\theta$[/tex] such that the cosine of [tex]$\theta$[/tex] equals [tex]$0.9256$[/tex], we use the arccosine function:
[tex]\[ \theta = \arccos(0.9256) \approx 0.39 \text{ radians} \][/tex]

Since cosine is positive in the fourth quadrant, we use the property of the cosine function:
[tex]\[ \theta = 2\pi - \arccos(0.9256) \approx 5.89 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = 0.39, 5.89 \][/tex]

### (c) [tex]$\tan \theta = 0.44$[/tex]

To find [tex]$\theta$[/tex] such that the tangent of [tex]$\theta$[/tex] equals [tex]$0.44$[/tex], we use the arctangent function:
[tex]\[ \theta = \arctan(0.44) \approx 0.41 \text{ radians} \][/tex]

Since tangent has a period of [tex]$\pi$[/tex], the other solution within [tex]$[0, 2\pi)$[/tex] is:
[tex]\[ \theta = \pi + \arctan(0.44) \approx 3.55 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = 0.41, 3.55 \][/tex]

### (d) [tex]$\cot \theta = -2.771$[/tex]

Since cotangent is the reciprocal of tangent, we first consider [tex]$\theta$[/tex] such that:
[tex]\[ \cot \theta = -2.771 \implies \tan \theta = \frac{1}{-2.771} \approx -0.36 \][/tex]

Using the arctangent function to find the principal angle:
[tex]\[ \theta = \arctan(-0.36) \approx -0.34 \text{ radians} \][/tex]

Because cotangent has a period of [tex]$\pi$[/tex], the possible solutions are adjusted to fit within [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = \arctan(-0.36) + \pi \approx 2.80 \text{ radians} \][/tex]

To get the second solution:
[tex]\[ \theta = \arctan(-0.36) + \pi - \pi = -0.34 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = 2.80, -0.34 \][/tex]

### (e) [tex]$\sec \theta = -3.58$[/tex]

Since secant is the reciprocal of cosine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \sec \theta = -3.58 \implies \cos \theta = \frac{1}{-3.58} \approx -0.28 \][/tex]

Using the arccosine function:
[tex]\[ \theta = \arccos(-0.28) \approx 5.00 \text{ radians} \][/tex]

Since cosine is negative in the second quadrant:
[tex]\[ \theta = \pi - \arccos(-0.28) \approx 1.86 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = 5.00, 1.86 \][/tex]

### (f) [tex]$\csc \theta = 1.212$[/tex]

Since cosecant is the reciprocal of sine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \csc \theta = 1.212 \implies \sin \theta = \frac{1}{1.212} \approx 0.825 \][/tex]

Using the arcsine function:
[tex]\[ \theta = \arcsin(0.825) \approx 0.97 \text{ radians} \][/tex]

Since sine is positive in the first and second quadrants:
[tex]\[ \theta = 2\pi - \arcsin(0.825) \approx 5.31 \text{ radians} \][/tex]

Thus, the solutions are:
[tex]\[ \theta = 0.97, 5.31 \][/tex]

Concluding, the solutions are:
- (a) [tex]$\sin \theta = -0.0149$[/tex]: [tex]$\theta = -0.01, 6.27$[/tex]
- (b) [tex]$\cos \theta = 0.9256$[/tex]: [tex]$\theta = 0.39, 5.89$[/tex]
- (c) [tex]$\tan \theta = 0.44$[/tex]: [tex]$\theta = 0.41, 3.55$[/tex]
- (d) [tex]$\cot \theta = -2.771$[/tex]: [tex]$\theta = 2.80, -0.34$[/tex]
- (e) [tex]$\sec \theta = -3.58$[/tex]: [tex]$\theta = 5.00, 1.86$[/tex]
- (f) [tex]$\csc \theta = 1.212$[/tex]: [tex]$\theta = 0.97, 5.31$[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.