At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve each of the given trigonometric equations step-by-step, approximating to the nearest 0.01 radian.
### (a) [tex]$\sin \theta = -0.0149$[/tex]
To find [tex]$\theta$[/tex] satisfying this equation, we look for [tex]$\theta$[/tex] such that the sine of [tex]$\theta$[/tex] equals [tex]$-0.0149$[/tex]. The principal solution for [tex]$\theta$[/tex] can be found using the arcsine function:
[tex]\[ \theta = \arcsin(-0.0149) \approx -0.01 \text{ radians} \][/tex]
Since sine is also negative in the fourth quadrant, we add [tex]$2\pi$[/tex] to bring it into the interval [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = 2\pi + \arcsin(-0.0149) \approx 6.27 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = -0.01, 6.27 \][/tex]
### (b) [tex]$\cos \theta = 0.9256$[/tex]
To find [tex]$\theta$[/tex] such that the cosine of [tex]$\theta$[/tex] equals [tex]$0.9256$[/tex], we use the arccosine function:
[tex]\[ \theta = \arccos(0.9256) \approx 0.39 \text{ radians} \][/tex]
Since cosine is positive in the fourth quadrant, we use the property of the cosine function:
[tex]\[ \theta = 2\pi - \arccos(0.9256) \approx 5.89 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.39, 5.89 \][/tex]
### (c) [tex]$\tan \theta = 0.44$[/tex]
To find [tex]$\theta$[/tex] such that the tangent of [tex]$\theta$[/tex] equals [tex]$0.44$[/tex], we use the arctangent function:
[tex]\[ \theta = \arctan(0.44) \approx 0.41 \text{ radians} \][/tex]
Since tangent has a period of [tex]$\pi$[/tex], the other solution within [tex]$[0, 2\pi)$[/tex] is:
[tex]\[ \theta = \pi + \arctan(0.44) \approx 3.55 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.41, 3.55 \][/tex]
### (d) [tex]$\cot \theta = -2.771$[/tex]
Since cotangent is the reciprocal of tangent, we first consider [tex]$\theta$[/tex] such that:
[tex]\[ \cot \theta = -2.771 \implies \tan \theta = \frac{1}{-2.771} \approx -0.36 \][/tex]
Using the arctangent function to find the principal angle:
[tex]\[ \theta = \arctan(-0.36) \approx -0.34 \text{ radians} \][/tex]
Because cotangent has a period of [tex]$\pi$[/tex], the possible solutions are adjusted to fit within [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = \arctan(-0.36) + \pi \approx 2.80 \text{ radians} \][/tex]
To get the second solution:
[tex]\[ \theta = \arctan(-0.36) + \pi - \pi = -0.34 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 2.80, -0.34 \][/tex]
### (e) [tex]$\sec \theta = -3.58$[/tex]
Since secant is the reciprocal of cosine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \sec \theta = -3.58 \implies \cos \theta = \frac{1}{-3.58} \approx -0.28 \][/tex]
Using the arccosine function:
[tex]\[ \theta = \arccos(-0.28) \approx 5.00 \text{ radians} \][/tex]
Since cosine is negative in the second quadrant:
[tex]\[ \theta = \pi - \arccos(-0.28) \approx 1.86 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 5.00, 1.86 \][/tex]
### (f) [tex]$\csc \theta = 1.212$[/tex]
Since cosecant is the reciprocal of sine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \csc \theta = 1.212 \implies \sin \theta = \frac{1}{1.212} \approx 0.825 \][/tex]
Using the arcsine function:
[tex]\[ \theta = \arcsin(0.825) \approx 0.97 \text{ radians} \][/tex]
Since sine is positive in the first and second quadrants:
[tex]\[ \theta = 2\pi - \arcsin(0.825) \approx 5.31 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.97, 5.31 \][/tex]
Concluding, the solutions are:
- (a) [tex]$\sin \theta = -0.0149$[/tex]: [tex]$\theta = -0.01, 6.27$[/tex]
- (b) [tex]$\cos \theta = 0.9256$[/tex]: [tex]$\theta = 0.39, 5.89$[/tex]
- (c) [tex]$\tan \theta = 0.44$[/tex]: [tex]$\theta = 0.41, 3.55$[/tex]
- (d) [tex]$\cot \theta = -2.771$[/tex]: [tex]$\theta = 2.80, -0.34$[/tex]
- (e) [tex]$\sec \theta = -3.58$[/tex]: [tex]$\theta = 5.00, 1.86$[/tex]
- (f) [tex]$\csc \theta = 1.212$[/tex]: [tex]$\theta = 0.97, 5.31$[/tex]
### (a) [tex]$\sin \theta = -0.0149$[/tex]
To find [tex]$\theta$[/tex] satisfying this equation, we look for [tex]$\theta$[/tex] such that the sine of [tex]$\theta$[/tex] equals [tex]$-0.0149$[/tex]. The principal solution for [tex]$\theta$[/tex] can be found using the arcsine function:
[tex]\[ \theta = \arcsin(-0.0149) \approx -0.01 \text{ radians} \][/tex]
Since sine is also negative in the fourth quadrant, we add [tex]$2\pi$[/tex] to bring it into the interval [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = 2\pi + \arcsin(-0.0149) \approx 6.27 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = -0.01, 6.27 \][/tex]
### (b) [tex]$\cos \theta = 0.9256$[/tex]
To find [tex]$\theta$[/tex] such that the cosine of [tex]$\theta$[/tex] equals [tex]$0.9256$[/tex], we use the arccosine function:
[tex]\[ \theta = \arccos(0.9256) \approx 0.39 \text{ radians} \][/tex]
Since cosine is positive in the fourth quadrant, we use the property of the cosine function:
[tex]\[ \theta = 2\pi - \arccos(0.9256) \approx 5.89 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.39, 5.89 \][/tex]
### (c) [tex]$\tan \theta = 0.44$[/tex]
To find [tex]$\theta$[/tex] such that the tangent of [tex]$\theta$[/tex] equals [tex]$0.44$[/tex], we use the arctangent function:
[tex]\[ \theta = \arctan(0.44) \approx 0.41 \text{ radians} \][/tex]
Since tangent has a period of [tex]$\pi$[/tex], the other solution within [tex]$[0, 2\pi)$[/tex] is:
[tex]\[ \theta = \pi + \arctan(0.44) \approx 3.55 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.41, 3.55 \][/tex]
### (d) [tex]$\cot \theta = -2.771$[/tex]
Since cotangent is the reciprocal of tangent, we first consider [tex]$\theta$[/tex] such that:
[tex]\[ \cot \theta = -2.771 \implies \tan \theta = \frac{1}{-2.771} \approx -0.36 \][/tex]
Using the arctangent function to find the principal angle:
[tex]\[ \theta = \arctan(-0.36) \approx -0.34 \text{ radians} \][/tex]
Because cotangent has a period of [tex]$\pi$[/tex], the possible solutions are adjusted to fit within [tex]$[0, 2\pi)$[/tex]:
[tex]\[ \theta = \arctan(-0.36) + \pi \approx 2.80 \text{ radians} \][/tex]
To get the second solution:
[tex]\[ \theta = \arctan(-0.36) + \pi - \pi = -0.34 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 2.80, -0.34 \][/tex]
### (e) [tex]$\sec \theta = -3.58$[/tex]
Since secant is the reciprocal of cosine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \sec \theta = -3.58 \implies \cos \theta = \frac{1}{-3.58} \approx -0.28 \][/tex]
Using the arccosine function:
[tex]\[ \theta = \arccos(-0.28) \approx 5.00 \text{ radians} \][/tex]
Since cosine is negative in the second quadrant:
[tex]\[ \theta = \pi - \arccos(-0.28) \approx 1.86 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 5.00, 1.86 \][/tex]
### (f) [tex]$\csc \theta = 1.212$[/tex]
Since cosecant is the reciprocal of sine, we find [tex]$\theta$[/tex] such that:
[tex]\[ \csc \theta = 1.212 \implies \sin \theta = \frac{1}{1.212} \approx 0.825 \][/tex]
Using the arcsine function:
[tex]\[ \theta = \arcsin(0.825) \approx 0.97 \text{ radians} \][/tex]
Since sine is positive in the first and second quadrants:
[tex]\[ \theta = 2\pi - \arcsin(0.825) \approx 5.31 \text{ radians} \][/tex]
Thus, the solutions are:
[tex]\[ \theta = 0.97, 5.31 \][/tex]
Concluding, the solutions are:
- (a) [tex]$\sin \theta = -0.0149$[/tex]: [tex]$\theta = -0.01, 6.27$[/tex]
- (b) [tex]$\cos \theta = 0.9256$[/tex]: [tex]$\theta = 0.39, 5.89$[/tex]
- (c) [tex]$\tan \theta = 0.44$[/tex]: [tex]$\theta = 0.41, 3.55$[/tex]
- (d) [tex]$\cot \theta = -2.771$[/tex]: [tex]$\theta = 2.80, -0.34$[/tex]
- (e) [tex]$\sec \theta = -3.58$[/tex]: [tex]$\theta = 5.00, 1.86$[/tex]
- (f) [tex]$\csc \theta = 1.212$[/tex]: [tex]$\theta = 0.97, 5.31$[/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.