Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
### Solution:
Let's break down the problem step-by-step and find the force between the two charged particles and the direction in which particle [tex]\( q_2 \)[/tex] will want to move.
Given Information:
- Charge [tex]\( q_1 = 6 \, \mu C = 6 \times 10^{-6} \, C \)[/tex]
- Charge [tex]\( q_2 = 2 \, \mu C = 2 \times 10^{-6} \, C \)[/tex]
- Distance between the charges [tex]\( d = 0.1 \, m \)[/tex]
- Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, N \cdot \frac{m^2}{C^2} \)[/tex]
#### Step-by-Step Calculation:
1. Coulomb’s Law Formula:
The force [tex]\( F \)[/tex] between two charges is given by Coulomb's law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{d^2} \][/tex]
2. Substitute the given values:
- [tex]\( q_1 = 6 \times 10^{-6} \, C \)[/tex]
- [tex]\( q_2 = 2 \times 10^{-6} \, C \)[/tex]
- [tex]\( d = 0.1 \, m \)[/tex]
- [tex]\( k = 8.99 \times 10^9 \, N \cdot \frac{m^2}{C^2} \)[/tex]
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{(6 \times 10^{-6}) \cdot (2 \times 10^{-6})}{(0.1)^2} \][/tex]
3. Calculate the numerator:
[tex]\[ (6 \times 10^{-6}) \cdot (2 \times 10^{-6}) = 12 \times 10^{-12} = 1.2 \times 10^{-11} \, C^2 \][/tex]
4. Calculate the denominator:
[tex]\[ (0.1)^2 = 0.01 \, m^2 \][/tex]
5. Compute the force:
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{1.2 \times 10^{-11}}{0.01} \][/tex]
6. Simplify further:
[tex]\[ F = 8.99 \times 10^9 \cdot 1.2 \times 10^{-9} \][/tex]
[tex]\[ F = 10.788 \, N \][/tex]
Result:
The magnitude of the force between the two particles is approximately [tex]\( 10.788 \, N \)[/tex].
### Direction of Force:
Both charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive. According to Coulomb's law, like charges repel each other.
Therefore:
- Particle [tex]\( q_2 \)[/tex] will want to move away from particle [tex]\( q_1 \)[/tex].
Summary:
- Force Applied between [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]: [tex]\( 10.788 \, N \)[/tex]
- Direction in which particle [tex]\( q_2 \)[/tex] wants to move: Away from [tex]\( q_1 \)[/tex], because the force is repulsive.
Let's break down the problem step-by-step and find the force between the two charged particles and the direction in which particle [tex]\( q_2 \)[/tex] will want to move.
Given Information:
- Charge [tex]\( q_1 = 6 \, \mu C = 6 \times 10^{-6} \, C \)[/tex]
- Charge [tex]\( q_2 = 2 \, \mu C = 2 \times 10^{-6} \, C \)[/tex]
- Distance between the charges [tex]\( d = 0.1 \, m \)[/tex]
- Coulomb's constant [tex]\( k = 8.99 \times 10^9 \, N \cdot \frac{m^2}{C^2} \)[/tex]
#### Step-by-Step Calculation:
1. Coulomb’s Law Formula:
The force [tex]\( F \)[/tex] between two charges is given by Coulomb's law:
[tex]\[ F = k \cdot \frac{|q_1 \cdot q_2|}{d^2} \][/tex]
2. Substitute the given values:
- [tex]\( q_1 = 6 \times 10^{-6} \, C \)[/tex]
- [tex]\( q_2 = 2 \times 10^{-6} \, C \)[/tex]
- [tex]\( d = 0.1 \, m \)[/tex]
- [tex]\( k = 8.99 \times 10^9 \, N \cdot \frac{m^2}{C^2} \)[/tex]
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{(6 \times 10^{-6}) \cdot (2 \times 10^{-6})}{(0.1)^2} \][/tex]
3. Calculate the numerator:
[tex]\[ (6 \times 10^{-6}) \cdot (2 \times 10^{-6}) = 12 \times 10^{-12} = 1.2 \times 10^{-11} \, C^2 \][/tex]
4. Calculate the denominator:
[tex]\[ (0.1)^2 = 0.01 \, m^2 \][/tex]
5. Compute the force:
[tex]\[ F = 8.99 \times 10^9 \cdot \frac{1.2 \times 10^{-11}}{0.01} \][/tex]
6. Simplify further:
[tex]\[ F = 8.99 \times 10^9 \cdot 1.2 \times 10^{-9} \][/tex]
[tex]\[ F = 10.788 \, N \][/tex]
Result:
The magnitude of the force between the two particles is approximately [tex]\( 10.788 \, N \)[/tex].
### Direction of Force:
Both charges [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex] are positive. According to Coulomb's law, like charges repel each other.
Therefore:
- Particle [tex]\( q_2 \)[/tex] will want to move away from particle [tex]\( q_1 \)[/tex].
Summary:
- Force Applied between [tex]\( q_1 \)[/tex] and [tex]\( q_2 \)[/tex]: [tex]\( 10.788 \, N \)[/tex]
- Direction in which particle [tex]\( q_2 \)[/tex] wants to move: Away from [tex]\( q_1 \)[/tex], because the force is repulsive.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.