Answered

Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

What is the density of a cube with a mass of 12.6 g and a side length of 4.1 cm? (Density: [tex]\( D=\frac{m}{v} \)[/tex])

A. [tex]\(0.1828 \, \text{g/cm}^3\)[/tex]
B. [tex]\(0.3254 \, \text{g/cm}^3\)[/tex]
C. [tex]\(3.073 \, \text{g/cm}^3\)[/tex]
D. [tex]\(68.92 \, \text{g/cm}^3\)[/tex]


Sagot :

To find the density of a cube given its mass and side length, follow these steps:

1. Determine the Volume of the Cube:
The volume [tex]\( V \)[/tex] of a cube can be calculated using the formula:
[tex]\[ V = \text{side length}^3 \][/tex]
Given that the side length of the cube is [tex]\( 4.1 \, \text{cm} \)[/tex]:
[tex]\[ V = 4.1^3 = 68.92099999999998 \, \text{cm}^3 \][/tex]

2. Calculate the Density:
Density [tex]\( D \)[/tex] is given by the formula:
[tex]\[ D = \frac{m}{V} \][/tex]
Where:
[tex]\( m \)[/tex] is the mass of the cube, which is [tex]\( 12.6 \, \text{g} \)[/tex]
[tex]\( V \)[/tex] is the volume of the cube, which we calculated to be [tex]\( 68.92099999999998 \, \text{cm}^3 \)[/tex]

Substitute the values into the formula:
[tex]\[ D = \frac{12.6 \, \text{g}}{68.92099999999998 \, \text{cm}^3} = 0.1828180090248256 \, \text{g/cm}^3 \][/tex]

3. Select the Closest Value:
Comparing this result to the given options:
- [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 0.3254 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 3.073 \, \text{g/cm}^3 \)[/tex]
- [tex]\( 68.92 \, \text{g/cm}^3 \)[/tex]

The closest value is [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex].

Therefore, the density of the cube is [tex]\( 0.1828 \, \text{g/cm}^3 \)[/tex].