Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the absolute value of the complex number [tex]\(4 + 7i\)[/tex], we use the formula for the absolute value of a complex number [tex]\(a + bi\)[/tex], which is given by:
[tex]\[ \left| a + bi \right| = \sqrt{a^2 + b^2} \][/tex]
In this case, the real part [tex]\(a\)[/tex] is 4 and the imaginary part [tex]\(b\)[/tex] is 7. Follow these steps:
1. Square the real part:
[tex]\[ 4^2 = 16 \][/tex]
2. Square the imaginary part:
[tex]\[ 7^2 = 49 \][/tex]
3. Sum the squares of the real and imaginary parts:
[tex]\[ 16 + 49 = 65 \][/tex]
4. Take the square root of the sum to find the absolute value:
[tex]\[ \sqrt{65} \approx 8.06225774829855 \][/tex]
Thus, the absolute value of [tex]\(4 + 7i\)[/tex] is approximately [tex]\(8.06225774829855\)[/tex]. Therefore, the absolute value of [tex]\(4 + 7i\)[/tex] is equal to the square root of 65.
[tex]\[ \left| 4 + 7i \right| = \sqrt{65} \][/tex]
[tex]\[ \left| a + bi \right| = \sqrt{a^2 + b^2} \][/tex]
In this case, the real part [tex]\(a\)[/tex] is 4 and the imaginary part [tex]\(b\)[/tex] is 7. Follow these steps:
1. Square the real part:
[tex]\[ 4^2 = 16 \][/tex]
2. Square the imaginary part:
[tex]\[ 7^2 = 49 \][/tex]
3. Sum the squares of the real and imaginary parts:
[tex]\[ 16 + 49 = 65 \][/tex]
4. Take the square root of the sum to find the absolute value:
[tex]\[ \sqrt{65} \approx 8.06225774829855 \][/tex]
Thus, the absolute value of [tex]\(4 + 7i\)[/tex] is approximately [tex]\(8.06225774829855\)[/tex]. Therefore, the absolute value of [tex]\(4 + 7i\)[/tex] is equal to the square root of 65.
[tex]\[ \left| 4 + 7i \right| = \sqrt{65} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.