Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

If [tex]\(\cos x = \sin (20^\circ + x)\)[/tex] and [tex]\(0^\circ \ \textless \ x \ \textless \ 90^\circ\)[/tex], the value of [tex]\(x\)[/tex] is [tex]\(\square^\circ\)[/tex].

Sagot :

To find the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\cos x = \sin (20^\circ + x)\)[/tex], follow these detailed steps:

1. Understand the trigonometric identities: One key identity to remember is that [tex]\(\cos \theta = \sin (90^\circ - \theta)\)[/tex]. This means we can rewrite [tex]\(\cos x\)[/tex] as [tex]\(\sin (90^\circ - x)\)[/tex].

2. Rewrite the equation: Using the identity, we can express [tex]\(\cos x\)[/tex] as [tex]\(\sin (90^\circ - x)\)[/tex]. So the original equation becomes:
[tex]\[ \sin (90^\circ - x) = \sin (20^\circ + x) \][/tex]

3. Set the arguments equal: Since the sine function has the property that [tex]\(\sin A = \sin B\)[/tex] implies [tex]\(A = B + 360^\circ k\)[/tex] or [tex]\(A = 180^\circ - B + 360^\circ k\)[/tex] for any integer [tex]\(k\)[/tex], apply this property. However, given that [tex]\(0^\circ < x < 90^\circ\)[/tex], we can directly set the angles equal without considering multiple cycles:
[tex]\[ 90^\circ - x = 20^\circ + x \][/tex]

4. Solve for [tex]\( x \)[/tex]: Combine like terms to isolate [tex]\( x \)[/tex].
[tex]\[ 90^\circ - x = 20^\circ + x \][/tex]
Add [tex]\( x \)[/tex] to both sides:
[tex]\[ 90^\circ = 20^\circ + 2x \][/tex]
Subtract [tex]\( 20^\circ \)[/tex] from both sides:
[tex]\[ 70^\circ = 2x \][/tex]
Divide by 2:
[tex]\[ x = 35^\circ \][/tex]

So, the value of [tex]\( x \)[/tex] is [tex]\( 35^\circ \)[/tex].

Therefore, if [tex]\(\cos x = \sin (20^\circ + x)\)[/tex] and [tex]\(0^\circ < x < 90^\circ\)[/tex], the value of [tex]\( x \)[/tex] is [tex]\( \boxed{35^\circ} \)[/tex].
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.