Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem step-by-step, let's follow these logical steps:
### Step 1: Calculate the moles of solute in the initial solution.
Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol
We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]
### Step 2: Calculate the molarity of the initial solution.
Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles
We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]
[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]
### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].
Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M
Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]
Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]
[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = 0.4 \text{ M} \][/tex]
Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].
So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]
### Step 1: Calculate the moles of solute in the initial solution.
Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol
We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]
### Step 2: Calculate the molarity of the initial solution.
Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles
We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]
[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]
### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].
Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M
Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]
Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]
[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = 0.4 \text{ M} \][/tex]
Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].
So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.