Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

A stock solution is made by dissolving 66.05 g of [tex]\((NH_4)_2SO_4\)[/tex] in enough water to make 250 mL of solution. A 10.0 mL sample of this solution is then diluted to 50.0 mL. Given that the molar mass of [tex]\((NH_4)_2SO_4\)[/tex] is 132.1 g/mol, what is the concentration of the new solution?

Use [tex]\(M_i V_i = M_f V_f\)[/tex] and molarity [tex]\(=\frac{\text{moles of solute}}{\text{liters of solution}}\)[/tex].

A. 0.400 M
B. 1.60 M
C. 5.00 M
D. 10.0 M


Sagot :

To solve the problem step-by-step, let's follow these logical steps:

### Step 1: Calculate the moles of solute in the initial solution.

Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol

We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]

[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]

[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]

### Step 2: Calculate the molarity of the initial solution.

Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles

We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]

[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]

[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]

### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].

Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M

Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]

Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]

[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]

[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]

[tex]\[ M_f = 0.4 \text{ M} \][/tex]

Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].

So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]