Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve the problem step-by-step, let's follow these logical steps:
### Step 1: Calculate the moles of solute in the initial solution.
Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol
We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]
### Step 2: Calculate the molarity of the initial solution.
Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles
We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]
[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]
### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].
Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M
Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]
Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]
[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = 0.4 \text{ M} \][/tex]
Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].
So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]
### Step 1: Calculate the moles of solute in the initial solution.
Given:
- Mass of solute (ammonium sulfate, [tex]\((NH_4)_2SO_4\)[/tex]): [tex]\( 66.05 \)[/tex] grams
- Molar mass of [tex]\((NH_4)_2SO_4\)[/tex]: [tex]\( 132.1 \)[/tex] g/mol
We can calculate the moles of [tex]\((NH_4)_2SO_4\)[/tex] using the formula:
[tex]\[ \text{moles of solute} = \frac{\text{mass of solute}}{\text{molar mass}} \][/tex]
[tex]\[ \text{moles of solute} = \frac{66.05 \text{ g}}{132.1 \text{ g/mol}} \][/tex]
[tex]\[ \text{moles of solute} = 0.5 \text{ moles} \][/tex]
### Step 2: Calculate the molarity of the initial solution.
Given:
- Volume of the initial solution: [tex]\( 250 \)[/tex] mL (which is [tex]\( 0.250 \)[/tex] L)
- Moles of solute: [tex]\( 0.5 \)[/tex] moles
We use the formula for molarity (concentration, [tex]\(M\)[/tex]):
[tex]\[ M = \frac{\text{moles of solute}}{\text{liters of solution}} \][/tex]
[tex]\[ M_{\text{initial}} = \frac{0.5 \text{ moles}}{0.250 \text{ L}} \][/tex]
[tex]\[ M_{\text{initial}} = 2.0 \text{ M} \][/tex]
### Step 3: Calculate the molarity of the final diluted solution using [tex]\(M_i V_i = M_f V_f\)[/tex].
Given:
- The initial sample volume ([tex]\(V_i\)[/tex]): [tex]\( 10.0 \)[/tex] mL (which is [tex]\( 0.010 \)[/tex] L)
- The final volume of the diluted solution ([tex]\(V_f\)[/tex]): [tex]\( 50.0 \)[/tex] mL (which is [tex]\( 0.050 \)[/tex] L)
- The molarity of the initial solution: [tex]\( 2.0 \)[/tex] M
Using the dilution formula:
[tex]\[ M_i V_i = M_f V_f \][/tex]
Solving for [tex]\( M_f \)[/tex] (final molarity):
[tex]\[ M_f = \frac{M_i V_i}{V_f} \][/tex]
[tex]\[ M_f = \frac{2.0 \text{ M} \times 0.010 \text{ L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = \frac{0.02 \text{ M \cdot L}}{0.050 \text{ L}} \][/tex]
[tex]\[ M_f = 0.4 \text{ M} \][/tex]
Thus, after diluting, the concentration of the new solution is [tex]\( 0.4 \text{ M} \)[/tex].
So, the correct answer is:
[tex]\[ 0.400 \text{ M} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.