Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem, we are given specific set operations and their cardinalities. Let's denote the sets and their operations as follows:
1. [tex]\( n(A - B) = 25 \)[/tex]
2. [tex]\( n(B - A) = 15 \)[/tex]
3. [tex]\( n(A \cup B) = 60 \)[/tex]
Our goal is to find:
i) [tex]\( n(A) \)[/tex]
ii) [tex]\( n(B) \)[/tex]
iii) [tex]\( n(A \cap B) \)[/tex]
We'll use the principle of set operations to derive these values.
### Step-by-Step Solution
#### 1. Understand the given cardinalities:
- [tex]\( n(A - B) \)[/tex]: number of elements in A but not in B.
- [tex]\( n(B - A) \)[/tex]: number of elements in B but not in A.
- [tex]\( n(A \cup B) \)[/tex]: number of elements either in A or B or in both.
#### 2. Formula for the union of two sets:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Let's denote [tex]\( x = n(A \cap B) \)[/tex], the number of elements in both sets A and B.
#### 3. Express total number of elements:
[tex]\[ n(A \cup B) = n((A - B) \cup (A \cap B) \cup (B - A)) \][/tex]
#### 4. Combine known values:
[tex]\[ n(A) = n(A - B) + n(A \cap B) \][/tex]
[tex]\[ n(B) = n(B - A) + n(A \cap B) \][/tex]
#### 5. Substitute values and solve for [tex]\( x \)[/tex]:
[tex]\[ n(A \cup B) = n(A - B) + n(A \cap B) + n(B - A) + n(A \cap B) \][/tex]
[tex]\[ 60 = 25 + x + 15 + x \][/tex]
[tex]\[ 60 = 40 + 2x \][/tex]
[tex]\[ 60 - 40 = 2x \][/tex]
[tex]\[ 20 = 2x \][/tex]
[tex]\[ x = 10 \][/tex]
So, [tex]\( n(A \cap B) = 10 \)[/tex].
#### 6. Calculate [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A) = n(A - B) + n(A \cap B) \][/tex]
[tex]\[ n(A) = 25 + 10 \][/tex]
[tex]\[ n(A) = 35 \][/tex]
[tex]\[ n(B) = n(B - A) + n(A \cap B) \][/tex]
[tex]\[ n(B) = 15 + 10 \][/tex]
[tex]\[ n(B) = 25 \][/tex]
### Summary of Results:
i) [tex]\( n(A) = 35 \)[/tex]
ii) [tex]\( n(B) = 25 \)[/tex]
iii) [tex]\( n(A \cap B) = 10 \)[/tex]
These are the correct values as derived through our step-by-step calculations.
1. [tex]\( n(A - B) = 25 \)[/tex]
2. [tex]\( n(B - A) = 15 \)[/tex]
3. [tex]\( n(A \cup B) = 60 \)[/tex]
Our goal is to find:
i) [tex]\( n(A) \)[/tex]
ii) [tex]\( n(B) \)[/tex]
iii) [tex]\( n(A \cap B) \)[/tex]
We'll use the principle of set operations to derive these values.
### Step-by-Step Solution
#### 1. Understand the given cardinalities:
- [tex]\( n(A - B) \)[/tex]: number of elements in A but not in B.
- [tex]\( n(B - A) \)[/tex]: number of elements in B but not in A.
- [tex]\( n(A \cup B) \)[/tex]: number of elements either in A or B or in both.
#### 2. Formula for the union of two sets:
[tex]\[ n(A \cup B) = n(A) + n(B) - n(A \cap B) \][/tex]
Let's denote [tex]\( x = n(A \cap B) \)[/tex], the number of elements in both sets A and B.
#### 3. Express total number of elements:
[tex]\[ n(A \cup B) = n((A - B) \cup (A \cap B) \cup (B - A)) \][/tex]
#### 4. Combine known values:
[tex]\[ n(A) = n(A - B) + n(A \cap B) \][/tex]
[tex]\[ n(B) = n(B - A) + n(A \cap B) \][/tex]
#### 5. Substitute values and solve for [tex]\( x \)[/tex]:
[tex]\[ n(A \cup B) = n(A - B) + n(A \cap B) + n(B - A) + n(A \cap B) \][/tex]
[tex]\[ 60 = 25 + x + 15 + x \][/tex]
[tex]\[ 60 = 40 + 2x \][/tex]
[tex]\[ 60 - 40 = 2x \][/tex]
[tex]\[ 20 = 2x \][/tex]
[tex]\[ x = 10 \][/tex]
So, [tex]\( n(A \cap B) = 10 \)[/tex].
#### 6. Calculate [tex]\( n(A) \)[/tex] and [tex]\( n(B) \)[/tex]:
[tex]\[ n(A) = n(A - B) + n(A \cap B) \][/tex]
[tex]\[ n(A) = 25 + 10 \][/tex]
[tex]\[ n(A) = 35 \][/tex]
[tex]\[ n(B) = n(B - A) + n(A \cap B) \][/tex]
[tex]\[ n(B) = 15 + 10 \][/tex]
[tex]\[ n(B) = 25 \][/tex]
### Summary of Results:
i) [tex]\( n(A) = 35 \)[/tex]
ii) [tex]\( n(B) = 25 \)[/tex]
iii) [tex]\( n(A \cap B) = 10 \)[/tex]
These are the correct values as derived through our step-by-step calculations.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.