Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the length of the segment [tex]$\overline{J^{\prime} K^{\prime}}$[/tex] after dilation by a scale factor of [tex]$n$[/tex] with the origin as the center of dilation, let's follow these steps:
1. Understand the concept of dilation:
Dilation is a transformation that produces an image that is the same shape as the original, but is a different size. The size change is determined by a scale factor, and the image is positioned relative to a fixed center point.
2. Scale factor and segment length:
If [tex]$\overline{J K}$[/tex] is a segment with a length of 1 unit and it is dilated by a scale factor of [tex]$n$[/tex], the length of the resulting segment [tex]$\overline{J^{\prime} K^{\prime}}$[/tex] changes according to the scale factor.
3. Effect of dilation on length:
When a segment is dilated with a scale factor of [tex]$n$[/tex], the length of the new segment [tex]$\overline{J^{\prime} K^{\prime}}$[/tex] is given by multiplying the length of the original segment [tex]$\overline{J K}$[/tex] by the scale factor [tex]$n$[/tex].
4. Calculation:
- The original length of [tex]$\overline{J K}$[/tex] is 1.
- The scale factor is [tex]$n$[/tex].
- Therefore, the length of [tex]$\overline{J^{\prime} K^{\prime}} = 1 * n = n$[/tex].
Based on this understanding, the correct answer is:
D. [tex]\( n \times 1 \)[/tex]
1. Understand the concept of dilation:
Dilation is a transformation that produces an image that is the same shape as the original, but is a different size. The size change is determined by a scale factor, and the image is positioned relative to a fixed center point.
2. Scale factor and segment length:
If [tex]$\overline{J K}$[/tex] is a segment with a length of 1 unit and it is dilated by a scale factor of [tex]$n$[/tex], the length of the resulting segment [tex]$\overline{J^{\prime} K^{\prime}}$[/tex] changes according to the scale factor.
3. Effect of dilation on length:
When a segment is dilated with a scale factor of [tex]$n$[/tex], the length of the new segment [tex]$\overline{J^{\prime} K^{\prime}}$[/tex] is given by multiplying the length of the original segment [tex]$\overline{J K}$[/tex] by the scale factor [tex]$n$[/tex].
4. Calculation:
- The original length of [tex]$\overline{J K}$[/tex] is 1.
- The scale factor is [tex]$n$[/tex].
- Therefore, the length of [tex]$\overline{J^{\prime} K^{\prime}} = 1 * n = n$[/tex].
Based on this understanding, the correct answer is:
D. [tex]\( n \times 1 \)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.